in

Mechanisms of dispersal and colonisation in a wind-borne cereal pest, the haplodiploid wheat curl mite

  • 1.

    Hawes, T. C., Worland, M. R., Convey, P. & Bale, J. S. Aerial dispersal of springtails on the Antarctic Peninsula: Implications for local distribution and demography. Antarct. Sci. 19, 3–10 (2007).

    ADS 

    Google Scholar 

  • 2.

    Benton, T. G. & Bowler, D. E. Linking dispersal to spatial dynamics in Dispersal Ecology and Evolution 251–265 (Oxford University Press, 2013). https://doi.org/10.1093/acprof:oso/9780199608898.003.0020.

  • 3.

    Rochat, E., Manel, S., Deschamps-Cottin, M., Widmer, I. & Joost, S. Persistence of butterfly populations in fragmented habitats along urban density gradients: Motility helps. Heredity (Edinb). 119, 328–338 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Machado, F. P., Roldán-Correa, A. & Schinazi, R. B. Colonization and collapse. ALEA, Lat. Am. J. Probab. Math. Stat. 14, 719–731 (2017)

  • 5.

    Junior, V. V., Machado, F. P. & Roldán-Correa, A. Dispersion as a survival strategy. J. Stat. Phys. 164, 937–951 (2016).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar 

  • 6.

    Saastamoinen, M. et al. Genetics of dispersal. Biol. Rev. 93, 574–599 (2018).

    PubMed 

    Google Scholar 

  • 7.

    Nichols, R. A. & Hewitt, G. M. The genetic consequences of long distance dispersal during colonization. Heredity (Edinb). 72, 312–317 (1994).

    Google Scholar 

  • 8.

    Bonte, D. et al. Costs of dispersal. Biol. Rev. 87, 290–312 (2012).

    PubMed 

    Google Scholar 

  • 9.

    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).

    PubMed 

    Google Scholar 

  • 10.

    Skelsey, P., With, K. A. & Garrett, K. A. Why dispersal should be maximized at intermediate scales of heterogeneity. Theor. Ecol. 6, 203–211 (2013).

    PubMed 

    Google Scholar 

  • 11.

    Payo-Payo, A. et al. Colonisation in social species: The importance of breeding experience for dispersal in overcoming information barriers. Sci. Rep. 7, 1–7 (2017).

    ADS 

    Google Scholar 

  • 12.

    Newman, D. & Pilson, D. Increased probability of extinction due to decreased genetic effective population size: Experimental populations of Clarkia pulchella. Evolution (N. Y.) 51, 354–362 (1997).

    Google Scholar 

  • 13.

    Bijlsma, R., Bundgaard, J. & Boerema, A. C. Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila. J. Evol. Biol. 13, 502–514 (2000).

    Google Scholar 

  • 14.

    Reed, D. H., Briscoe, D. A. & Frankham, R. Inbreeding and extinction: The effect of environmental stress and lineage. Conserv. Genet. 3, 301–307 (2002).

    CAS 

    Google Scholar 

  • 15.

    Reed, D. H., Lowe, E. H., Briscoe, D. A. & Frankham, R. Fitness and adaptation in a novel environment: Effect of inbreeding, prior environment, and lineage. Evolution (N. Y.) 57, 1822–1828 (2003).

    Google Scholar 

  • 16.

    Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Szücs, M. et al. Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc. Natl. Acad. Sci. USA 114, 13501–13506 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Tien, N. S. H., Sabelis, M. W. & Egas, M. Inbreeding depression and purging in a haplodiploid: Gender-related effects. Heredity (Edinb). 114, 327–332 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Smith, A. L. et al. Dispersal responses override density effects on genetic diversity during post-disturbance succession. Proc. R. Soc. B Biol. Sci. 283, 20152934 (2016).

  • 21.

    Clotuche, G. et al. The formation of collective silk balls in the spider mite Tetranychus urticae Koch. PLoS ONE 6, e18854 (2011).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 22.

    Clotuche, G., Navajas, M., Mailleux, A.-C. & Hance, T. Reaching the ball or missing the flight? Collective dispersal in the two-spotted spider mite Tetranychus urticae. PLoS ONE 8, e77573 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 23.

    Carew, M., Schiffer, M., Umina, P., Weeks, A. & Hoffmann, A. Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia. Bull. Entomol. Res. 99, 479–486 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Hein, G. L., French, R., Siriwetwiwat, B. & Amrine, J. W. Genetic characterization of North American populations of the wheat curl mite and dry bulb mite. J. Econ. Entomol. 105, 1801–1808 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Kuczyński, L. et al. A comprehensive and cost-effective approach for investigating passive dispersal in minute invertebrates with case studies of phytophagous eriophyid mites. Exp. Appl. Acarol. 82, 17–31 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Helle, W. & Wysoki, M. 1.3.2 Arrhenotokous parthenogenesis. In World Crop Pests (eds Lindquist, E. E., Sabelis, M. W., Bruin, J.) vol. 6, 169–172 (Elsevier, 1996).

  • 27.

    Miller, A. D., Umina, P. A., Weeks, A. R. & Hoffmann, A. A. Population genetics of the wheat curl mite (Aceria tosichella Keifer) in Australia: Implications for the management of wheat pathogens. Bull. Entomol. Res. 102, 199–212 (2012).

  • 28.

    Sabelis, M. W. & Bruin, J. 1.5.3 Evolutionary ecology: Life history patterns, food plant choice and dispersal. World Crop Pests 6, 329–366 (1996).

    Google Scholar 

  • 29.

    Laska, A., Rector, B. G., Skoracka, A. & Kuczyński, L. Can your behaviour blow you away? Contextual and phenotypic precursors to passive aerial dispersal in phytophagous mites. Anim. Behav. 155, 141–151 (2019).

    Google Scholar 

  • 30.

    Lacy, R. C. Loss of genetic diversity from managed populations: Interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).

    Google Scholar 

  • 31.

    Powell, J. R. The effects of founder-flush cycles on ethological isolation in laboratory populations of Drosophila in Genetics. In Speciation and the Founder Principle (eds Giddings, L. V. et al.) 239–251 (Oxford University Press, 1989).

    Google Scholar 

  • 32.

    Jamieson, I. G. Efecto fundador, endogamia y pérdida de diversidad genética en cuatro programas de reintroducción de Aves. Conserv. Biol. 25, 115–123 (2011).

    PubMed 

    Google Scholar 

  • 33.

    Montero-Pau, J., Gómez, A. & Serra, M. Founder effects drive the genetic structure of passively dispersed aquatic invertebrates. PeerJ 6, e6094 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Perrin, N. & Mazalov, V. Dispersal and inbreeding avoidance. Am. Nat. 154, 282–292 (1999).

    PubMed 

    Google Scholar 

  • 35.

    Aguilera-Olivares, D., Flores-Prado, L., Véliz, D. & Niemeyer, H. M. Mechanisms of inbreeding avoidance in the one-piece drywood termite Neotermes chilensis. Insectes Soc. 62, 237–245 (2015).

    Google Scholar 

  • 36.

    Tabadkani, S. M., Nozari, J. & Lihoreau, M. Inbreeding and the evolution of sociality in arthropods. Naturwissenschaften 99, 779–788 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 37.

    Yearsley, J. M., Viard, F. & Broquet, T. The effect of collective dispersal on the genetic structure of a subdivided population. Evolution (N. Y.) 67, 1649–1659 (2013).

    Google Scholar 

  • 38.

    van der Kooi, C. J., Matthey-Doret, C. & Schwander, T. Evolution and comparative ecology of parthenogenesis in haplodiploid arthropods. Evol. Lett. 1, 304–316 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Li, X.-Y. & Kokko, H. Sex-biased dispersal: A review of the theory. Biol. Rev. 94, 721–736 (2019).

    PubMed 

    Google Scholar 

  • 40.

    Nault, L. R. & Styer, W. E. The dispersal of Aceria tulipae and three other grass-infesting Eriophyid mites in Ohio. Ann. Entomol. Soc. Am. 62, 1446–1455 (1969).

    Google Scholar 

  • 41.

    Southwood, T. R. E., May, R. M., Hassell, M. P. & Conway, G. R. Ecological strategies and population parameters. Am. Nat. 108, 791–804 (1974).

    Google Scholar 

  • 42.

    Frost, W. E. Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae), and implications for migratory fitness. Physiol. Entomol. 22, 37–46 (1997).

    Google Scholar 

  • 43.

    Ronce, O. & Clobert, J. Dispersal syndromes in Dispersal Ecology and Evolution (eds Baguette, M., Benton, T. G., Bullock, J. M.) vol. 1, 119–138 (Oxford University Press, 2012).

  • 44.

    Laska A. et al. A sink host allows a specialist herbivore to persist in a seasonal source. Proc. Roy. Soc. B, accepted for publication (2021).

  • 45.

    Skoracka, A. et al. Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari: Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data. Invertebr. Syst. 26, 417 (2012).

    Google Scholar 

  • 46.

    Miller, A. D., Umina, P. A., Weeks, A. R. & Hoffmann, A. A. Population genetics of the wheat curl mite (Aceria tosichella Keifer) in Australia: Implications for the management of wheat pathogens. Bull. Entomol. Res. 102, 199–212 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Karpicka-Ignatowska, K. et al. A novel experimental approach for studying life-history traits of phytophagous arthropods utilizing an artificial culture medium. Sci. Rep. 9, (2019).

  • 48.

    Karpicka-Ignatowska, K., Laska, A., Rector, B. G., Skoracka, A. & Kuczyński, L. Temperature-dependent development and survival of an invasive genotype of wheat curl mite, Aceria tosichella. Exp. Appl. Acarol. 83, 513–525 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Amrine, J. W. & Manson, D. C. M. Preparation, mounting and descriptive study of eriophyoid mites. In Eriophyoid Mites—Their Biology, Natural Enemies and Control Vol. 6 (eds Lindquist, E. E. & Bruin, M. W.) 383–396 (Elsevier, 1996).

    Google Scholar 

  • 50.

    de Lillo, E., Craemer, C., Amrine, J. W. & Nuzzaci, G. Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). Exp. Appl. Acarol. 51, 283–307 (2010).

    PubMed 

    Google Scholar 

  • 51.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020). https://www.R-project.org/. Accessed 24 Apr 2020.

  • 52.

    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed 

    Google Scholar 

  • 53.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).

    Google Scholar 

  • 54.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Google Scholar 

  • 55.

    Wood, S. N. Generalized Additive Models (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/9781315370279.

    Book 
    MATH 

    Google Scholar 

  • 56.

    Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.8. https://CRAN.R-project.org/package=emmeans


  • Source: Ecology - nature.com

    Courtney Lesoon and Elizabeth Yarina win Fulbright-Hays Scholarships

    Overcoming a bottleneck in carbon dioxide conversion