Hawes, T. C., Worland, M. R., Convey, P. & Bale, J. S. Aerial dispersal of springtails on the Antarctic Peninsula: Implications for local distribution and demography. Antarct. Sci. 19, 3–10 (2007).
Google Scholar
Benton, T. G. & Bowler, D. E. Linking dispersal to spatial dynamics in Dispersal Ecology and Evolution 251–265 (Oxford University Press, 2013). https://doi.org/10.1093/acprof:oso/9780199608898.003.0020.
Rochat, E., Manel, S., Deschamps-Cottin, M., Widmer, I. & Joost, S. Persistence of butterfly populations in fragmented habitats along urban density gradients: Motility helps. Heredity (Edinb). 119, 328–338 (2017).
Google Scholar
Machado, F. P., Roldán-Correa, A. & Schinazi, R. B. Colonization and collapse. ALEA, Lat. Am. J. Probab. Math. Stat. 14, 719–731 (2017)
Junior, V. V., Machado, F. P. & Roldán-Correa, A. Dispersion as a survival strategy. J. Stat. Phys. 164, 937–951 (2016).
Google Scholar
Saastamoinen, M. et al. Genetics of dispersal. Biol. Rev. 93, 574–599 (2018).
Google Scholar
Nichols, R. A. & Hewitt, G. M. The genetic consequences of long distance dispersal during colonization. Heredity (Edinb). 72, 312–317 (1994).
Bonte, D. et al. Costs of dispersal. Biol. Rev. 87, 290–312 (2012).
Google Scholar
Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).
Google Scholar
Skelsey, P., With, K. A. & Garrett, K. A. Why dispersal should be maximized at intermediate scales of heterogeneity. Theor. Ecol. 6, 203–211 (2013).
Google Scholar
Payo-Payo, A. et al. Colonisation in social species: The importance of breeding experience for dispersal in overcoming information barriers. Sci. Rep. 7, 1–7 (2017).
Google Scholar
Newman, D. & Pilson, D. Increased probability of extinction due to decreased genetic effective population size: Experimental populations of Clarkia pulchella. Evolution (N. Y.) 51, 354–362 (1997).
Bijlsma, R., Bundgaard, J. & Boerema, A. C. Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila. J. Evol. Biol. 13, 502–514 (2000).
Reed, D. H., Briscoe, D. A. & Frankham, R. Inbreeding and extinction: The effect of environmental stress and lineage. Conserv. Genet. 3, 301–307 (2002).
Google Scholar
Reed, D. H., Lowe, E. H., Briscoe, D. A. & Frankham, R. Fitness and adaptation in a novel environment: Effect of inbreeding, prior environment, and lineage. Evolution (N. Y.) 57, 1822–1828 (2003).
Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).
Google Scholar
Szücs, M. et al. Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc. Natl. Acad. Sci. USA 114, 13501–13506 (2017).
Google Scholar
Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).
Google Scholar
Tien, N. S. H., Sabelis, M. W. & Egas, M. Inbreeding depression and purging in a haplodiploid: Gender-related effects. Heredity (Edinb). 114, 327–332 (2015).
Google Scholar
Smith, A. L. et al. Dispersal responses override density effects on genetic diversity during post-disturbance succession. Proc. R. Soc. B Biol. Sci. 283, 20152934 (2016).
Clotuche, G. et al. The formation of collective silk balls in the spider mite Tetranychus urticae Koch. PLoS ONE 6, e18854 (2011).
Google Scholar
Clotuche, G., Navajas, M., Mailleux, A.-C. & Hance, T. Reaching the ball or missing the flight? Collective dispersal in the two-spotted spider mite Tetranychus urticae. PLoS ONE 8, e77573 (2013).
Google Scholar
Carew, M., Schiffer, M., Umina, P., Weeks, A. & Hoffmann, A. Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia. Bull. Entomol. Res. 99, 479–486 (2009).
Google Scholar
Hein, G. L., French, R., Siriwetwiwat, B. & Amrine, J. W. Genetic characterization of North American populations of the wheat curl mite and dry bulb mite. J. Econ. Entomol. 105, 1801–1808 (2012).
Google Scholar
Kuczyński, L. et al. A comprehensive and cost-effective approach for investigating passive dispersal in minute invertebrates with case studies of phytophagous eriophyid mites. Exp. Appl. Acarol. 82, 17–31 (2020).
Google Scholar
Helle, W. & Wysoki, M. 1.3.2 Arrhenotokous parthenogenesis. In World Crop Pests (eds Lindquist, E. E., Sabelis, M. W., Bruin, J.) vol. 6, 169–172 (Elsevier, 1996).
Miller, A. D., Umina, P. A., Weeks, A. R. & Hoffmann, A. A. Population genetics of the wheat curl mite (Aceria tosichella Keifer) in Australia: Implications for the management of wheat pathogens. Bull. Entomol. Res. 102, 199–212 (2012).
Sabelis, M. W. & Bruin, J. 1.5.3 Evolutionary ecology: Life history patterns, food plant choice and dispersal. World Crop Pests 6, 329–366 (1996).
Laska, A., Rector, B. G., Skoracka, A. & Kuczyński, L. Can your behaviour blow you away? Contextual and phenotypic precursors to passive aerial dispersal in phytophagous mites. Anim. Behav. 155, 141–151 (2019).
Lacy, R. C. Loss of genetic diversity from managed populations: Interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).
Powell, J. R. The effects of founder-flush cycles on ethological isolation in laboratory populations of Drosophila in Genetics. In Speciation and the Founder Principle (eds Giddings, L. V. et al.) 239–251 (Oxford University Press, 1989).
Jamieson, I. G. Efecto fundador, endogamia y pérdida de diversidad genética en cuatro programas de reintroducción de Aves. Conserv. Biol. 25, 115–123 (2011).
Google Scholar
Montero-Pau, J., Gómez, A. & Serra, M. Founder effects drive the genetic structure of passively dispersed aquatic invertebrates. PeerJ 6, e6094 (2018).
Google Scholar
Perrin, N. & Mazalov, V. Dispersal and inbreeding avoidance. Am. Nat. 154, 282–292 (1999).
Google Scholar
Aguilera-Olivares, D., Flores-Prado, L., Véliz, D. & Niemeyer, H. M. Mechanisms of inbreeding avoidance in the one-piece drywood termite Neotermes chilensis. Insectes Soc. 62, 237–245 (2015).
Tabadkani, S. M., Nozari, J. & Lihoreau, M. Inbreeding and the evolution of sociality in arthropods. Naturwissenschaften 99, 779–788 (2012).
Google Scholar
Yearsley, J. M., Viard, F. & Broquet, T. The effect of collective dispersal on the genetic structure of a subdivided population. Evolution (N. Y.) 67, 1649–1659 (2013).
van der Kooi, C. J., Matthey-Doret, C. & Schwander, T. Evolution and comparative ecology of parthenogenesis in haplodiploid arthropods. Evol. Lett. 1, 304–316 (2017).
Google Scholar
Li, X.-Y. & Kokko, H. Sex-biased dispersal: A review of the theory. Biol. Rev. 94, 721–736 (2019).
Google Scholar
Nault, L. R. & Styer, W. E. The dispersal of Aceria tulipae and three other grass-infesting Eriophyid mites in Ohio. Ann. Entomol. Soc. Am. 62, 1446–1455 (1969).
Southwood, T. R. E., May, R. M., Hassell, M. P. & Conway, G. R. Ecological strategies and population parameters. Am. Nat. 108, 791–804 (1974).
Frost, W. E. Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae), and implications for migratory fitness. Physiol. Entomol. 22, 37–46 (1997).
Ronce, O. & Clobert, J. Dispersal syndromes in Dispersal Ecology and Evolution (eds Baguette, M., Benton, T. G., Bullock, J. M.) vol. 1, 119–138 (Oxford University Press, 2012).
Laska A. et al. A sink host allows a specialist herbivore to persist in a seasonal source. Proc. Roy. Soc. B, accepted for publication (2021).
Skoracka, A. et al. Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari: Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data. Invertebr. Syst. 26, 417 (2012).
Miller, A. D., Umina, P. A., Weeks, A. R. & Hoffmann, A. A. Population genetics of the wheat curl mite (Aceria tosichella Keifer) in Australia: Implications for the management of wheat pathogens. Bull. Entomol. Res. 102, 199–212 (2012).
Google Scholar
Karpicka-Ignatowska, K. et al. A novel experimental approach for studying life-history traits of phytophagous arthropods utilizing an artificial culture medium. Sci. Rep. 9, (2019).
Karpicka-Ignatowska, K., Laska, A., Rector, B. G., Skoracka, A. & Kuczyński, L. Temperature-dependent development and survival of an invasive genotype of wheat curl mite, Aceria tosichella. Exp. Appl. Acarol. 83, 513–525 (2021).
Google Scholar
Amrine, J. W. & Manson, D. C. M. Preparation, mounting and descriptive study of eriophyoid mites. In Eriophyoid Mites—Their Biology, Natural Enemies and Control Vol. 6 (eds Lindquist, E. E. & Bruin, M. W.) 383–396 (Elsevier, 1996).
de Lillo, E., Craemer, C., Amrine, J. W. & Nuzzaci, G. Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). Exp. Appl. Acarol. 51, 283–307 (2010).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020). https://www.R-project.org/. Accessed 24 Apr 2020.
Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
Google Scholar
Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Wood, S. N. Generalized Additive Models (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/9781315370279.
Google Scholar
Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.8. https://CRAN.R-project.org/package=emmeans
Source: Ecology - nature.com