in

Permafrost carbon emissions in a changing Arctic

  • 1.

    Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Google Scholar 

  • 2.

    Lindgren, A., Hugelius, G. & Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560, 219–222 (2018).

    Google Scholar 

  • 3.

    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Google Scholar 

  • 4.

    Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).

    Google Scholar 

  • 5.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Google Scholar 

  • 6.

    Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).

    Google Scholar 

  • 7.

    McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).

    Google Scholar 

  • 8.

    Heffernan, L., Estop-Aragonés, C., Knorr, K. H., Talbot, J. & Olefeldt, D. Long-term impacts of permafrost thaw on carbon storage in peatlands: deep losses offset by surficial accumulation. J. Geophys. Res. Biogeosci. 125, e2019JG005501 (2020).

    Google Scholar 

  • 9.

    Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Chang. 7, 340–344 (2017).

    Google Scholar 

  • 10.

    Bartsch, A. et al. Can C-band synthetic aperture radar be used to estimate soil organic carbon storage in tundra? Biogeosciences 13, 5453–5470 (2016).

    Google Scholar 

  • 11.

    Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).

    Google Scholar 

  • 12.

    Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl Acad. Sci. USA 114, 5361–5366 (2017).

    Google Scholar 

  • 13.

    Natali, S. M. et al. Permafrost carbon feedbacks threaten global climate goals. Proc. Natl. Acad. Sci. USA 118, e2100163118 (2021).

    Google Scholar 

  • 14.

    Zona, D. et al. Cold season emissions dominate the Arctic tundra methane budget. Proc. Natl Acad. Sci. USA 113, 40–45 (2016).

    Google Scholar 

  • 15.

    Comyn-Platt, E. et al. Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks. Nat. Geosci. 11, 568–573 (2018).

    Google Scholar 

  • 16.

    Heslop, J. K. K. et al. A synthesis of methane dynamics in thermokarst lake environments. Earth Sci. Rev. 210, 103365 (2020).

    Google Scholar 

  • 17.

    Keuper, F. et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13, 560–565 (2020).

    Google Scholar 

  • 18.

    Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).

    Google Scholar 

  • 19.

    Lara, M. J. et al. Local-scale Arctic tundra heterogeneity affects regional-scale carbon dynamics. Nat. Commun. 11, 4925 (2020).

    Google Scholar 

  • 20.

    Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Google Scholar 

  • 21.

    Rey, D. M. et al. Wildfire-initiated talik development exceeds current thaw projections: observations and models from Alaska’s continuous permafrost zone. Geophys. Res. Lett. 47, e2020GL087565 (2020).

    Google Scholar 

  • 22.

    Kim, J. S., Kug, J. S., Jeong, S. J., Park, H. & Schaepman-Strub, G. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 6, eaax3308 (2020).

    Google Scholar 

  • 23.

    Vonk, J. E., Tank, S. E. & Walvoord, M. A. Integrating hydrology and biogeochemistry across frozen landscapes. Nat. Commun. 10, 5377 (2019).

    Google Scholar 

  • 24.

    Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Google Scholar 

  • 25.

    Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).

    Google Scholar 

  • 26.

    Schwab, M. S. et al. An abrupt aging of dissolved organic carbon in large Arctic rivers. Geophys. Res. Lett. 47, e2020GL088823 (2020).

    Google Scholar 

  • 27.

    Walter Anthony, K. M. et al. Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw. Environ. Res. Lett. 16, 35010 (2021).

    Google Scholar 

  • 28.

    Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).

    Google Scholar 

  • 29.

    Turner, M. G. et al. Climate change, ecosystems and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105 (2020).

    Google Scholar 

  • 30.

    Fountain, A. G. et al. The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. Bioscience 62, 405–415 (2012).

    Google Scholar 

  • 31.

    Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).

    Google Scholar 

  • 32.

    Zou, D. et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11, 2527–2542 (2012).

    Google Scholar 

  • 33.

    Sayedi, S. S. et al. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environ. Res. Lett. 15, 124075 (2020).

    Google Scholar 

  • 34.

    Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00240-1 (2022).

    Article 

    Google Scholar 

  • 35.

    Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).

    Google Scholar 

  • 36.

    Strauss, J. et al. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res. Lett. 40, 6165–6170 (2013).

    Google Scholar 

  • 37.

    Elder, C. D. et al. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nat. Clim. Chang. 8, 166–171 (2018).

    Google Scholar 

  • 38.

    Martens, J. et al. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the last deglaciation. Glob. Biogeochem. Cycles 33, 2–14 (2019).

    Google Scholar 

  • 39.

    Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).

    Google Scholar 

  • 40.

    Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–24 (2019).

    Google Scholar 

  • 41.

    Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).

    Google Scholar 

  • 42.

    Mishra, U. et al. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Sci. Adv. 7, 5236–5260 (2021).

    Google Scholar 

  • 43.

    Treat, C. C. et al. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Global Chang. Biol. 24, 5188–5204 (2018).

    Google Scholar 

  • 44.

    Siewert, M. B., Lantuit, H., Richter, A. & Hugelius, G. Permafrost causes unique fine-scale spatial variability across tundra soils. Glob. Biogeochem. Cycles 35, e2020GB006659 (2021).

    Google Scholar 

  • 45.

    Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Chang. 10, 1143–1148 (2020).

    Google Scholar 

  • 46.

    Hope, C. & Schaefer, K. Economic impacts of carbon dioxide and methane released from thawing permafrost. Nat. Clim. Chang. 6, 56–59 (2016).

    Google Scholar 

  • 47.

    Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).

    Google Scholar 

  • 48.

    Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Google Scholar 

  • 49.

    Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).

    Google Scholar 

  • 50.

    Tanski, G. et al. Rapid CO2 release from eroding permafrost in seawater. Geophys. Res. Lett. 46, 11244–11252 (2019).

    Google Scholar 

  • 51.

    Liljedahl, A. K., Gädeke, A., O’Neel, S., Gatesman, T. A. & Douglas, T. A. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophys. Res. Lett. 44, 6876–6885 (2017).

    Google Scholar 

  • 52.

    Yumashev, D. et al. Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nat. Commun. 10, 1900 (2019).

    Google Scholar 

  • 53.

    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    Google Scholar 

  • 54.

    Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Chang. 5, 67–70 (2015).

    Google Scholar 

  • 55.

    Anthony, K. W. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    Google Scholar 

  • 56.

    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 201916387 (2020).

    Google Scholar 

  • 57.

    Christensen, T. R., Arora, V. K., Gauss, M., Höglund-Isaksson, L. & Parmentier, F. J. W. Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Sci. Rep. 9, 1146 (2019).

    Google Scholar 

  • 58.

    United Nations Framework Convention on Climate Change. Total aggregate greenhouse gas emissions of individual nations, annex 1. World Resources Institute https://www.wri.org/resources/data-sets/climate-watch-cait-unfccc-annex-i-ghg-emissions-data (2008).

  • 59.

    Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).

    Google Scholar 

  • 60.

    Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E. M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Chang. 8, 309–312 (2018).

    Google Scholar 

  • 61.

    Jones, B. M. et al. Lake and drained lake basin systems in lowland permafrost regions. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00238-9 (2022).

  • 62.

    Matthews, E., Johnson, M. S., Genovese, V., Du, J. & Bastviken, D. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Sci. Rep. 10, 12465 (2020).

    Google Scholar 

  • 63.

    Lamontagne-Hallé, P., McKenzie, J. M., Kurylyk, B. L. & Zipper, S. C. Changing groundwater discharge dynamics in permafrost regions. Environ. Res. Lett. 13, 084017 (2018).

    Google Scholar 

  • 64.

    Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).

    Google Scholar 

  • 65.

    Jeong, S. J. et al. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO2 measurements. Sci. Adv. 4, eaao1167 (2018).

    Google Scholar 

  • 66.

    Disher, B. S., Connon, R. F., Haynes, K. M., Hopkinson, C. & Quinton, W. L. The hydrology of treed wetlands in thawing discontinuous permafrost regions. Ecohydrology 14, e2296 (2021).

    Google Scholar 

  • 67.

    Parazoo, N. C. et al. Detecting regional patterns of changing CO2 flux in Alaska. Proc. Natl Acad. Sci. USA 113, 7733–7738 (2016).

    Google Scholar 

  • 68.

    Silva, J. L. A., Souza, A. F., Caliman, A., Voigt, E. L. & Lichston, J. E. Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecol. Evol. 8, 4–12 (2018).

    Google Scholar 

  • 69.

    Ward, C. P. & Cory, R. M. Chemical composition of dissolved organic matter draining permafrost soils. Geochim. Cosmochim. Acta 167, 63–79 (2015).

    Google Scholar 

  • 70.

    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).

    Google Scholar 

  • 71.

    Stein, L. Y. The long-term relationship between microbial metabolism and greenhouse gases. Trends Microbiol. 28, 500–511 (2020).

    Google Scholar 

  • 72.

    Feng, J. et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 8, 3 (2020).

    Google Scholar 

  • 73.

    Estop-Aragonés, C. et al. Assessing the potential for mobilization of old soil carbon after permafrost thaw: a synthesis of 14C measurements from the northern permafrost region. Glob. Biogeochem. Cycles 34, e2020GB006672 (2020).

    Google Scholar 

  • 74.

    Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

    Google Scholar 

  • 75.

    Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

    Google Scholar 

  • 76.

    Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Chang. 6, 595–600 (2016).

    Google Scholar 

  • 77.

    Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).

    Google Scholar 

  • 78.

    Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).

    Google Scholar 

  • 79.

    Kwon, M. J. et al. Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Glob. Chang. Biol. 23, 2396–2412 (2017).

    Google Scholar 

  • 80.

    Jin, X.-Y. et al. Impacts of climate-induced permafrost degradation on vegetation: a review. Adv. Clim. Chang. Res. 12, 29–47 (2020).

    Google Scholar 

  • 81.

    Song, X. et al. Soil moisture as a key factor in carbon release from thawing permafrost in a boreal forest. Geoderma 357, 113975 (2020).

    Google Scholar 

  • 82.

    Zhu, Y. et al. Disproportionate increase in freshwater methane emissions induced by experimental warming. Nat. Clim. Chang. 10, 685–690 (2020).

    Google Scholar 

  • 83.

    Watts, J. D., Kimball, J. S., Bartsch, A. & McDonald, K. C. Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. Lett. 9, 075001 (2014).

    Google Scholar 

  • 84.

    Thompson, R. L. et al. Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion. Atmos. Chem. Phys. 17, 3553–3572 (2017).

    Google Scholar 

  • 85.

    Oh, Y. et al. Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nat. Clim. Chang. 10, 317–321 (2020).

    Google Scholar 

  • 86.

    Street, L. E. et al. Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Glob. Chang. Biol. 26, 4559–4571 (2020).

    Google Scholar 

  • 87.

    Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).

    Google Scholar 

  • 88.

    Hu, Y., Fernandez-Anez, N., Smith, T. E. L. & Rein, G. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildland Fire 27, 293–312 (2018).

    Google Scholar 

  • 89.

    Abbott, B. W. et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 034014 (2016).

    Google Scholar 

  • 90.

    Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).

    Google Scholar 

  • 91.

    Holloway, J. E. et al. Impact of wildfire on permafrost landscapes: a review of recent advances and future prospects. Permafr. Periglac. Process. 31, 371–382 (2020).

    Google Scholar 

  • 92.

    McCarty, J. L., Smith, T. E. L. & Turetsky, M. R. Arctic fires re-emerging. Nat. Geosci. 13, 658–660 (2020).

    Google Scholar 

  • 93.

    Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M. & Veraverbeke, S. Overwintering fires in boreal forests. Nature 593, 399–404 (2021).

    Google Scholar 

  • 94.

    Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Phil. Trans. R. Soc. A 373, 20140423 (2015).

    Google Scholar 

  • 95.

    MacDougall, A. H. & Knutti, R. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences 13, 2123–2136 (2016).

    Google Scholar 

  • 96.

    Cooper, M. D. A. et al. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nat. Clim. Chang. 7, 507–511 (2017).

    Google Scholar 

  • 97.

    Andresen, C. G. et al. Soil moisture and hydrology projections of the permafrost region–a model intercomparison. Cryosphere 14, 445–459 (2020).

    Google Scholar 

  • 98.

    Bartsch, A., Pointner, G., Ingeman-Nielsen, T. & Lu, W. Towards circumpolar mapping of Arctic settlements and infrastructure based on Sentinel-1 and Sentinel-2. Remote Sens. 12, 2368 (2020).

    Google Scholar 

  • 99.

    Swingedouw, D. et al. Early warning from space for a few key tipping points in physical, biological, and social-ecological systems. Surv. Geophys. 41, 1237–1284 (2020).

    Google Scholar 

  • 100.

    Elder, C. D. et al. Airborne mapping reveals emergent power law of Arctic methane emissions. Geophys. Res. Lett. 47, e2019GL085707 (2020).

    Google Scholar 

  • 101.

    Byrne, B. et al. Improved constraints on northern extratropical CO2 fluxes obtained by combining surface-based and space-based atmospheric CO2 measurements. J. Geophys. Res. Atmos. 125, e2019JD032029 (2020).

    Google Scholar 

  • 102.

    Karlson, M. et al. Delineating northern peatlands using Sentinel-1 time series and terrain indices from local and regional digital elevation models. Remote Sens. Environ. 231, 111252 (2019).

    Google Scholar 

  • 103.

    Cusworth, D. H. et al. Synthesis of methane observations across scales: strategies for deploying a multitiered observing network. Geophys. Res. Lett. 47, e2020GL087869 (2020).

    Google Scholar 

  • 104.

    Bale, N. J. et al. Fatty acid and hopanoid adaption to cold in the methanotroph methylovulum psychrotolerans. Front. Microbiol. 10, 589 (2019).

    Google Scholar 

  • 105.

    Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).

    Google Scholar 

  • 106.

    Siliakus, M. F., van der Oost, J. & Kengen, S. W. M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21, 651–670 (2017).

    Google Scholar 

  • 107.

    Johnson, S. S. et al. Ancient bacteria show evidence of DNA repair. Proc. Natl Acad. Sci. USA 104, 14401–14405 (2007).

    Google Scholar 

  • 108.

    Hueffer, K., Drown, D., Romanovsky, V. & Hennessy, T. Factors contributing to anthrax outbreaks in the circumpolar north. Ecohealth 17, 174–180 (2020).

    Google Scholar 

  • 109.

    Miner, K. R. et al. Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Clim. Chang. 11, 809–819 (2021).

    Google Scholar 

  • 110.

    Perron, G. G. et al. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE 10, e0069533 (2015).

    Google Scholar 

  • 111.

    MacKelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).

    Google Scholar 

  • 112.

    Burkert, A., Douglas, T. A., Waldrop, M. P. & Mackelprang, R. Changes in the active, dead, and dormant microbial community structure across a pleistocene permafrost chronosequence. Appl. Environ. Microbiol. 85, e02646-18 (2019).

    Google Scholar 

  • 113.

    Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).

    Google Scholar 

  • 114.

    Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

    Google Scholar 

  • 115.

    Schadel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Chang. 6, 950–953 (2016).

    Google Scholar 

  • 116.

    Lee, H. et al. A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Glob. Chang. Biol. 17, 1379–1393 (2011).

    Google Scholar 

  • 117.

    Euskirchen, E. S., Edgar, C. W., Turetsky, M. R., Waldrop, M. P. & Harden, J. W. Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost. J. Geophys. Res. Biogeosci. 119, 1576–1595 (2014).

    Google Scholar 

  • 118.

    Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W. & Romanovsky, V. E. Long-term release of carbon dioxide from arctic tundra ecosystems in Alaska. Ecosystems 20, 960–974 (2017).

    Google Scholar 

  • 119.

    Karlsson, J. et al. Carbon emission from Western Siberian inland waters. Nat. Commun. 12, 825 (2021).

    Google Scholar 

  • 120.

    Schuur, E. A. G. et al. Tundra underlain by thawing permafrost persistently emits carbon to the atmosphere over 15 years of measurements. J. Geophys. Res. Biogeosci. 126, e2020JG006044 (2021).

    Google Scholar 

  • 121.

    Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).

    Google Scholar 

  • 122.

    Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00233-0 (2022).

    Article 

    Google Scholar 

  • 123.

    Kanevskiy, M. et al. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomorphology 253, 370–384 (2016).

    Google Scholar 

  • 124.

    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Google Scholar 

  • 125.

    Schimel, D. & Schneider, F. D. Flux towers in the sky: global ecology from space. New Phytol. 224, 570–584 (2019).

    Google Scholar 

  • 126.

    Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).

    Google Scholar 

  • 127.

    Jammet, M. et al. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic. Biogeosciences 14, 5189–5216 (2017).

    Google Scholar 

  • 128.

    Kohnert, K., Serafimovich, A., Metzger, S., Hartmann, J. & Sachs, T. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Sci. Rep. 7, 5828 (2017).

    Google Scholar 

  • 129.

    Sayres, D. S. et al. Arctic regional methane fluxes by ecotope as derived using eddy covariance from a low-flying aircraft. Atmos. Chem. Phys. 17, 8619–8633 (2017).

    Google Scholar 

  • 130.

    Ueyama, M. et al. Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. J. Geophys. Res. Biogeosci. 118, 1266–1281 (2013).

    Google Scholar 

  • 131.

    Davidson, S. J. et al. Upscaling CH4 fluxes using high-resolution imagery in Arctic tundra ecosystems. Remote Sens. 9, 1227 (2017).

    Google Scholar 

  • 132.

    Peltola, O. et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 11, 1263–1289 (2019).

    Google Scholar 

  • 133.

    Chang, R. Y. W. et al. Methane emissions from Alaska in 2012 from CARVE airborne observations. Proc. Natl Acad. Sci. USA 111, 16694–16699 (2014).

    Google Scholar 

  • 134.

    Saeki, T. et al. Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO2 measurements. J. Geophys. Res. Atmos. 118, 1100–1122 (2013).

    Google Scholar 

  • 135.

    Kim, J. et al. Impact of Siberian observations on the optimization of surface CO2 flux. Atmos. Chem. Phys. 17, 2881–2899 (2017).

    Google Scholar 

  • 136.

    O’Shea, S. J. et al. Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012. Atmos. Chem. Phys. 14, 13159–13174 (2014).

    Google Scholar 

  • 137.

    Gottwald, M. & Bovensmann, H. SCIAMACHY — Exploring the Changing Earth’s Atmosphere (Springer, 2011).

  • 138.

    Siewert, M. B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment. Biogeosciences 15, 1663–1682 (2018).

    Google Scholar 

  • 139.

    Arndt, K. A. et al. Arctic greening associated with lengthening growing seasons in Northern Alaska. Environ. Res. Lett. 14, 125018 (2019).

    Google Scholar 

  • 140.

    Widhalm, B., Bartsch, A. & Heim, B. A novel approach for the characterization of tundra wetland regions with C-band SAR satellite data. Int. J. Remote Sens. 36, 5537–5556 (2015).

    Google Scholar 

  • 141.

    Varon, D. J. et al. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmos. Meas. Tech. 14, 2771–2785 (2021).

    Google Scholar 

  • 142.

    Bartsch, A., Hofler, A., Kroisleitner, C. & Trofaier, A. M. Land cover mapping in northern high latitude permafrost regions with satellite data: achievements and remaining challenges. Remote Sens. 8, 979 (2016).

    Google Scholar 

  • 143.

    Flato, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 9 (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 144.

    Kivimäki, E. et al. Evaluation and analysis of the seasonal cycle and variability of the trend from GOSAT methane retrievals. Remote Sens. 11, 882 (2019).

    Google Scholar 

  • 145.

    Lindqvist, H. et al. Does GOSAT capture the true seasonal cycle of carbon dioxide? Atmos. Chem. Phys. 15, 13023–13040 (2015).

    Google Scholar 

  • 146.

    Chadburn, S. et al. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences 14, 5143–5169 (2017).

    Google Scholar 

  • 147.

    Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).

    Google Scholar 

  • 148.

    Aas, K. S. et al. Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. Cryosphere 13, 591–609 (2019).

    Google Scholar 

  • 149.

    Westermann, S. et al. Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia. Cryosphere 11, 1441–1463 (2017).

    Google Scholar 

  • 150.

    Houweling, S. et al. An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. J. Geophys. Res. 120, 5253–5266 (2015).

    Google Scholar 

  • 151.

    Houweling, S. et al. Global inverse modeling of CH4 sources and sinks: an overview of methods. Atmos. Chem. Phys. 17, 235–256 (2017).

    Google Scholar 

  • 152.

    Tsuruta, A. et al. Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0. Geosci. Model Dev. 10, 1261–1289 (2017).

    Google Scholar 

  • 153.

    Virkkala, A. M., Abdi, A. M., Luoto, M. & Metcalfe, D. B. Identifying multidisciplinary research gaps across Arctic terrestrial gradients. Environ. Res. Lett. 14, 124061 (2019).

    Google Scholar 

  • 154.

    Hakkarainen, J., Ialongo, I., Maksyutov, S. & Crisp, D. Analysis of four years of global XCO2 anomalies as seen by Orbiting Carbon Observatory-2. Remote Sens. 11, 850 (2019).

    Google Scholar 

  • 155.

    Fisher, J. B. et al. Missing pieces to modeling the Arctic-Boreal puzzle. Environ. Res. Lett. 13, 020202 (2018).

    Google Scholar 

  • 156.

    McGuire, A. D. et al. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9, 3185–3204 (2012).

    Google Scholar 

  • 157.

    Lenton, T. M. & Williams, H. T. P. On the origin of planetary-scale tipping points. Trends Ecol. Evol. 28, 380–382 (2013).

    Google Scholar 

  • 158.

    Lenton, T. M. Arctic climate tipping points. Ambio 41, 10–22 (2012).

    Google Scholar 

  • 159.

    Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 592–595 (2019).

    Google Scholar 

  • 160.

    Fleisher, A. J., Long, D. A., Liu, Q., Gameson, L. & Hodges, J. T. Optical measurement of radiocarbon below unity fraction modern by linear absorption spectroscopy. J. Phys. Chem. Lett. 8, 4550–4556 (2017).

    Google Scholar 

  • 161.

    Genoud, G. et al. Laser spectroscopy for monitoring of radiocarbon in atmospheric samples. Anal. Chem. 91, 12315–12320 (2019).

    Google Scholar 

  • 162.

    Levin, I. et al. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B Chem. Phys. Meteorol. 62, 26–46 (2010).

    Google Scholar 

  • 163.

    Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases — carbon dioxide, methane, and nitrous oxide. Glob. Chang. Biol. 23, 3121–3138 (2017).

    Google Scholar 

  • 164.

    Mu, C. C. et al. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophys. Res. Lett. 44, 8945–8952 (2017).

    Google Scholar 

  • 165.

    Krogh, S. A., Pomeroy, J. W. & Marsh, P. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model. J. Hydrol. 550, 685–703 (2017).

    Google Scholar 

  • 166.

    Burke, E. J., Zhang, Y. & Krinner, G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere 14, 3155–3174 (2020).

    Google Scholar 

  • 167.

    Treat, C. C., Bloom, A. A. & Marushchak, M. E. Nongrowing season methane emissions — a significant component of annual emissions across northern ecosystems. Glob. Chang. Biol. 24, 3331–3343 (2018).

    Google Scholar 

  • 168.

    Kelley, J. J., Weaver, D. F. & Smith, B. P. The variation of carbon dioxide under the snow in the Arctic. Ecology 49, 358–361 (1968).

    Google Scholar 

  • 169.

    Du, J. et al. Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat. Remote Sens. Environ. 213, 1–17 (2018).

    Google Scholar 

  • 170.

    Webb, E. E. et al. Increased wintertime CO2 loss as a result of sustained tundra warming. J. Geophys. Res. Biogeosci. 121, 249–265 (2016).

    Google Scholar 

  • 171.

    Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E. & Schuur, E. A. G. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 11, 040201 (2016).

    Google Scholar 

  • 172.

    Kleinen, T. & Brovkin, V. Pathway-dependent fate of permafrost region carbon. Environ. Res. Lett. 13, 094001 (2018).

    Google Scholar 

  • 173.

    Anthony, K. M. W. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).

    Google Scholar 

  • 174.

    Crichton, K. A., Bouttes, N., Roche, D. M., Chappellaz, J. & Krinner, G. Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nat. Geosci. 9, 683–686 (2016).

    Google Scholar 

  • 175.

    Tesi, T. et al. Massive remobilization of permafrost carbon during post-glacial warming. Nat. Commun. 7, 13653 (2016).

    Google Scholar 

  • 176.

    McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).

    Google Scholar 

  • 177.

    Bernhardt, E. S. et al. Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20, 665–682 (2016).

    Google Scholar 

  • 178.

    Kuze, A. et al. Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space. Atmos. Meas. Tech. 9, 2445–2461 (2016).

    Google Scholar 

  • 179.

    Eldering, A. et al. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science 358, eaam5745 (2017).

    Google Scholar 

  • 180.

    Yang, D. et al. First global carbon dioxide maps produced from TanSat measurements. Adv. Atmos. Sci. 35, 621–623 (2018).

    Google Scholar 

  • 181.

    Glumb, R., Davis, G. & Lietzke, C. in IEEE International Geoscience and Remote Sensing Symposium 1238–1240 (IEEE, 2014).

  • 182.

    Lorente, A. et al. Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 14, 665–684 (2021).

    Google Scholar 

  • 183.

    Ehret, G. et al. MERLIN: a French–German space lidar mission dedicated to atmospheric methane. Remote Sens. 9, 1052 (2017).

    Google Scholar 

  • 184.

    Bousquet, P. et al. Error budget of the MEthane Remote LIdar missioN and its impact on the uncertainties of the global methane budget. J. Geophys. Res. Atmos. 123, 11,766–11,785 (2018).

    Google Scholar 

  • 185.

    Bezy, J.-L. et al. in IEEE International Geoscience and Remote Sensing Symposium 8400–8403 (IEEE, 2019).

  • 186.

    Ingmann, P. et al. Requirements for the GMES atmosphere service and ESA’s implementation concept: Sentinels-4/-5 and -5p. Remote Sens. Environ. 120, 58–69 (2012).

    Google Scholar 

  • 187.

    Nassar, R. et al. The atmospheric imaging mission for northern regions: AIM-North. Can. J. Remote Sens. 45, 423–442 (2019).

    Google Scholar 

  • 188.

    Polonsky, I. N., O’Brien, D. M., Kumer, J. B., O’Dell, C. W. & the geoCARB Team. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations. Atmos. Meas. Tech. 7, 959–981 (2014).

    Google Scholar 

  • 189.

    Chahine, M. T. et al. Improving weather forecasting and providing new data on greenhouse gases. Bull. Am. Meteorol. Soc. 87, 911–926 (2006).

    Google Scholar 

  • 190.

    Clerbaux, C. et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 9, 6041–6054 (2009).

    Google Scholar 

  • 191.

    Han, Y. et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos. 118, 734–12,748 (2013).

    Google Scholar 

  • 192.

    Zou, C. Z. et al. The reprocessed Suomi NPP satellite observations. Remote Sens. 12, 2891 (2020).

    Google Scholar 

  • 193.

    Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_CCI): permafrost climate research data package v1 (CEDA, 2020).

  • 194.

    Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).

    Google Scholar 

  • 195.

    Arctic Climate Impact Assessment. Impacts of a Warming Arctic: Arctic Climate Impact Assessment (Cambridge Univ. Press, 2004).


  • Source: Ecology - nature.com

    Courtney Lesoon and Elizabeth Yarina win Fulbright-Hays Scholarships

    Overcoming a bottleneck in carbon dioxide conversion