in

Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks

  • 1.

    Steidinger BS, Crowther TW, Liang J, Van Nuland ME, Werner GD, Reich PB, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature. 2019;569:404–8.

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Finlay RD. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot. 2008;59:1115–26.

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Smith SE, Read D. Nitrogen mobilization and nutrition in ectomycorrhizal plants. Mycorrhizal Symbiosis. 2008;321–48. https://doi.org/10.1016/b978-012370526-6.50011-8.

  • 4.

    Osonubi O, Mulongoy K, Awotoye OO, Atayese MO, Okali DUU. Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant Soil. 1991;136:131–43.

    Google Scholar 

  • 5.

    Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V, et al. Ectomycorrhizal fungi induce systemic resistance against insects on a nonmycorrhizal plant in a CERK1-dependent manner. N Phytol. 2020;228:728–40.

    Google Scholar 

  • 6.

    Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V, et al. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev. 2012;26:39–60.

    Google Scholar 

  • 7.

    Molina R, Horton TR. Mycorrhiza specificity: its role in the development and function of common mycelial networks. Mycorrhizal Netw. 2015. https://doi.org/10.1007/978-94-017-7395-9_1.

  • 8.

    Van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. N Phytol. 2015;205:1406–23.

    Google Scholar 

  • 9.

    Brundrett MC. Coevolution of roots and mycorrhizas of land plants. N Phytol. 2002;154:275–304.

    Google Scholar 

  • 10.

    Linkies A, Graeber K, Knight C, Leubner-Metzger G. The evolution of seeds. N Phytol. 2010;186:817–31.

    CAS 

    Google Scholar 

  • 11.

    Nara K. Ectomycorrhizal networks and seedling establishment during early primary succession. N Phytol. 2006;169:169–78.

    CAS 

    Google Scholar 

  • 12.

    Horton TR, Molina R, Hood K. Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza. 2005;15:393–403.

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Teste FP, Simard SW, Durall DM, Guy RD, Jones MD, Schoonmaker AL. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology. 2009;90:2808–22.

    PubMed 

    Google Scholar 

  • 14.

    Teste FP, Simard SW. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia. 2008;158:193–203.

    PubMed 

    Google Scholar 

  • 15.

    Egerton-Warburton LM, Querejeta JI, Allen MF. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot. 2007;58:1473–83.

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Wallander H, Ekblad A. The Importance of ectomycorrhizal networks for nutrient retention and carbon sequestration in forest ecosystems. Mycorrhizal Netw. 2015;69–90. https://doi.org/10.1007/978-94-017-7395-9_3.

  • 17.

    Song YY, Simard SW, Carroll A, Mohn WW, Zeng RS. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci Rep. 2015;5:1–9.

    CAS 

    Google Scholar 

  • 18.

    Selosse MA, Richard F, He X, Simard SW. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol. 2006;21:621–8.

    PubMed 

    Google Scholar 

  • 19.

    Robinson D, Fitter A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot. 1999;50:9–13.

    CAS 

    Google Scholar 

  • 20.

    Hoeksema JD. Experimentally testing effects of mycorrhizal networks on plant-plant interactions and distinguishing among mechanisms. Mycorrhizal Netw. 2015;255–77. https://doi.org/10.1007/978-94-017-7395-9_9.

  • 21.

    Teste FP, Karst J, Jones MD, Simard SW, Durall DM. Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers. Mycorrhiza. 2006;17:51–65.

    PubMed 

    Google Scholar 

  • 22.

    Graves JD, Watkins NK, Fitter AH, Robinson D, Scrimgeour C. Intraspecific transfer of carbon between plants linked by a common mycorrhizal network. Plant Soil. 1997;192:153–9.

    CAS 

    Google Scholar 

  • 23.

    Wu B, Nara K, Hogetsu T. Can 14C-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? N Phytol. 2001;149:137–46.

    CAS 

    Google Scholar 

  • 24.

    Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol. 2010;25:468–78.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Scheublin TR, Van Logtestijn RSP, Van Der Heijden MGA. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol. 2007;95:631–8.

    CAS 

    Google Scholar 

  • 26.

    Epron D, Bahn M, Derrien D, Lattanzi FA, Pumpanen J, Gessler A, et al. Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol. 2012;32:776–98.

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Whiteside MD, Werner GD, Caldas VE, Padje A, Dupin SE, Elbers B, et al. Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Curr Biol. 2019;29:2043–50.e8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Gorka S, Dietrich M, Mayerhofer W, Gabriel R, Wiesenbauer J, Martin V, et al. Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front Microbiol. 2019;10:1–20.

    Google Scholar 

  • 29.

    Leake JR, Donnelly DP, Saunders EM, Boddy L, Read DJ. Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction a wood-decomposer fungus. Tree Physiol. 2001;21:71–82.

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature. 1997;388:579–82.

    CAS 

    Google Scholar 

  • 32.

    Klein T, Siegwolf RTW, Körner C. Belowground carbon trade among tall trees in a temperate forest. Science 2016;1500:15–8.

    Google Scholar 

  • 33.

    Rog I, Rosenstock NP, Körner C, Klein T. Share the wealth: trees with greater ectomycorrhizal species overlap share more carbon. Mol Ecol. 2020;29:2321–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Pickles BJ, Wilhelm R, Asay AK, Hahn AS, Simard SW, Mohn WW. Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. N Phytol. 2017;214:400–11.

    CAS 

    Google Scholar 

  • 35.

    Lu Y, Conrad R. In situ stable isotope probing of methanogenic Archaea in the rice rhizosphere. Science. 2005;309:1088–90.

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Haichar Z, Heulin T, Guyonnet JP, Achouak W. Science direct stable isotope probing of carbon flow in the plant holobiont. Curr Opin Biotechnol. 2016;41:9–13.

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Sietiö OM, Tuomivirta T, Santalahti M, Kiheri H, Timonen S, Sun H, et al. Ericoid plant species and Pinus sylvestris shape fungal communities in their roots and surrounding soil. N Phytol. 2018;218:738–51.

    Google Scholar 

  • 38.

    Sapes G, Demaree P, Lekberg Y, Sala A. Plant carbohydrate depletion impairs water relations and spreads via ectomycorrhizal networks. N Phytol. 2021;229:3172–83.

    CAS 

    Google Scholar 

  • 39.

    Sheffer E. A review of the development of Mediterranean pine-oak ecosystems after land abandonment and afforestation: are they novel ecosystems? Ann Sci. 2012;69:429–43.

    Google Scholar 

  • 40.

    Ajbilou R, Marañón T, Arroyo J. Ecological and biogeographical analyses of Mediterranean forests of northern Morocco. Acta Oecologica. 2006;29:104–13.

    Google Scholar 

  • 41.

    Loudermilk E, Hiers J, Pokswinski S, O’Brien JJ, Barnett A, Mitchell RJ. The path back: Oaks (Quercus spp.) facilitate longleaf pine (Pinus palustris) seedling establishment in xeric sites. Ecosphere. 2016;7:1–14.

    Google Scholar 

  • 42.

    Hynes MM, Smith ME, Zasoski RJ, Bledsoe CS. A molecular survey of ectomycorrhizal hyphae in a California Quercus-Pinus woodland. Mycorrhiza. 2010;20:265–74.

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Rog I, Jakoby G, Klein T. Forest ecology and management carbon allocation dynamics in conifers and broadleaved tree species revealed by pulse labeling and mass balance. Ecol Manag. 2021;493:119258.

    Google Scholar 

  • 44.

    Jia Z, Cao W, Herna M. DNA-Based stable isotope probing. Springer. 2019;2046:17–29.

    CAS 

    Google Scholar 

  • 45.

    Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl Environ Microbiol. 2016;82:7217–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Blecher-Gonen R, Barnett-Itzhaki Z, Jaitin D, Amann-Zalcenstein D, Lara-Astiaso D, Amit I. High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states. Nat Protoc. 2013;8:539–54.

    PubMed 

    Google Scholar 

  • 48.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Buckley DH, Barnett SE, Youngblut ND. Data analysis for DNA stable isotope probing experiments using multiple window high-resolution SIP Chapter 9. Springer. 2019;2046:44–5.

    Google Scholar 

  • 50.

    Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Kuzyakov Y, Gavrichkova O. time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol. 2010;16:3386–406.

    Google Scholar 

  • 52.

    Hagedorn F, Joseph J, Peter M, Luster J, Pritsch K, Geppert U, et al. Recovery of trees from drought depends on belowground sink control. Nat Plants. 2016;2:1–5.

    Google Scholar 

  • 53.

    Moreno-Arroyo B, Infante F, Pulido E, Gómez J. The biogeography and taxonomy of Tuber oligospermum (Tul. and C. Tul.) Trappe (Ascomycota). Cryptogam Mycol. 2000;21:147–52.

    Google Scholar 

  • 54.

    Buscardo E, Rodríguez-Echeverría S, Martín MP, De Angelis P, Pereira JS, Freitas H. Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biol. 2010;114:628–36.

    PubMed 

    Google Scholar 

  • 55.

    Louro R, Santos-Silva C, Nobre T. What is in a name? Terfezia classification revisited. Fungal Biol. 2019;123:267–73.

    PubMed 

    Google Scholar 

  • 56.

    Tedersoo L, Arnold AE, Hansen K. Novel aspects in the life cycle and biotrophic interactions in Pezizomycetes (Ascomycota, Fungi). Mol Ecol. 2013;22:1488–93.

    PubMed 

    Google Scholar 

  • 57.

    Tedersoo L, Smith ME. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev. 2013;27:83–99.

    Google Scholar 

  • 58.

    Agerer R. Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog. 2006;5:67–107.

    Google Scholar 

  • 59.

    Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza. 2010;20:217–63.

    PubMed 

    Google Scholar 

  • 60.

    Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-García M, et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun. 2020;11:1–17.

    Google Scholar 

  • 61.

    Bruns TD, Bidartondo MI, Taylor DL. Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol. 2002;42:352–9.

    PubMed 

    Google Scholar 

  • 62.

    Pumpanen JS, Heinonsalo J, Rasilo T, Hurme KR, Ilvesniemi H. Carbon balance and allocation of assimilated CO2 in Scots pine, Norway spruce, and Silver birch seedlings determined with gas exchange measurements and 14C pulse labelling. Trees Struct Funct. 2009;23:611–21.

    CAS 

    Google Scholar 

  • 63.

    Heinonsalo J, Pumpanen J, Rasilo T, Hurme KR, Ilvesniemi H. Carbon partitioning in ectomycorrhizal Scots pine seedlings. Soil Biol Biochem. 2010;42:1614–23.

    CAS 

    Google Scholar 

  • 64.

    Wallander H, Göransson H, Rosengren U. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia. 2004;139:89–97.

    PubMed 

    Google Scholar 

  • 65.

    Wilhelm R, Szeitz A, Klassen TL, Mohn WW. Sensitive, efficient quantitation of 13C-enriched nucleic acids via ultrahigh-performance liquid chromatography-tandem mass spectrometry for applications in stable isotope probing. Appl Environ Microbiol. 2014;80:7206–11. https://doi.org/10.1128/AEM.02223-14.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Schildkraut CL, Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962;4:430–43.

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Jakoby G, Rog I, Megidish S, Klein T. Enhanced root exudation of mature broadleaf and conifer trees in a Mediterranean forest during the dry season. Tree Physiol. 2020;40:1595–605.

    PubMed 

    Google Scholar 

  • 68.

    Meier IC, Pritchard SG, Brzostek ER, Mccormack ML, Phillips RP. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. N Phytol. 2015;205:1164–74.

    CAS 

    Google Scholar 

  • 69.

    Ranjard L, Dequiedt S, Prévost-Bouré NC, Thioulouse J, Saby NPA, Lelievre M, et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 2013;4:1–10.

    Google Scholar 

  • 70.

    Carmi I, Yakir D, Yechieli Y, Kronfield J, Stiller M. Variations in the isotopic composition of dissolved inorganic carbon in the unsaturated zone of a semi-arid region. Radiocarbon. 2015;57:397–406.

    CAS 

    Google Scholar 

  • 71.

    Klein T, Hoch G. Tree carbon allocation dynamics determined using a carbon mass balance approach. N Phytol. 2015;205:147–59.

    CAS 

    Google Scholar 

  • 72.

    Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V. et al. Recently photoassimilated carbon and fungus-delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of Fagus sylvatica. N Phytol. 2021;232:2457–74. https://doi.org/10.1111/nph.17591.

    CAS 
    Article 

    Google Scholar 

  • 73.

    Fraser EC, Lieffers VJ, Landhäusser SM. Carbohydrate transfer through root grafts to support shaded trees. Tree Physiol. 2006;26:1019–23.

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Van Der Heijden MGA, Horton TR. Socialism in soil? the importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol. 2009;97:1139–50.

    Google Scholar 


  • Source: Ecology - nature.com

    Biodiversity conservation in Afghanistan under the returned Taliban

    Leaf plasticity across wet and dry seasons in Croton blanchetianus (Euphorbiaceae) at a tropical dry forest