in

Leaf plasticity across wet and dry seasons in Croton blanchetianus (Euphorbiaceae) at a tropical dry forest

  • 1.

    Holechek, J. L., Pieper, R. D. & Herbel, C. H. Range management: Principles and practices 6th edn. (Pearson Education, Inc., 2011).

    Google Scholar 

  • 2.

    Dombroski, J. L. D., Praxedes, S. C., de Freitas, R. M. O. & Pontes, F. M. Water relations of Caatinga trees in the dry season. S. Afr. J. Bot. 77, 430–434 (2011).

    Google Scholar 

  • 3.

    Santos, M. G. et al. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes?. Theor. Experim. Plant Physiol. 26, 83–99 (2014).

    Google Scholar 

  • 4.

    Mendes, K. et al. Croton blanchetianus modulates its morphophysiological responses to tolerate drought in a tropical dry forest. Funct. Plant Biol. 10, 1–13 (2017).

    Google Scholar 

  • 5.

    Smith, W. K. & Nobel, P. S. Influences of seasonal changes in leaf morphology on water-use efficiency for three desert broad leaf shrubs. Ecology 58, 1033–1043 (1977).

    Google Scholar 

  • 6.

    Kyparissis, A. & Manetas, Y. Seasonal leaf dimorphism in a semi-deciduous Mediterranean shrub-ecophysiological comparisons between winter and summer leaves. Acta Oecol.-Oecol. Plantarum 14, 23–32 (1993).

    Google Scholar 

  • 7.

    Kloeppel, B. D., Abrams, M. D. & Kubiske, M. E. Seasonal ecophysiology and leaf morphology of four successional Pennsylvania barrens species in open versus understory environments. Can. J. For. Res. 23(2), 181–189 (1993).

    Google Scholar 

  • 8.

    Coley, P. D. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74, 531–536 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Reich, P., Walters, M. & Ellsworth, D. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94, 13730–13734 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Pompelli, M. F. et al. Allometric models for non-destructive leaf area estimation of the Jatropha curcas. Biomass Bioenerg. 36, 77–85 (2012).

    Google Scholar 

  • 11.

    Duan, B., Yang, Y., Lu, Y., Korpelainen, H. & Berninger, F. C. L. Interactions between drought stress, ABA and genotypes in Picea asperata. J. Exp. Bot. 58, 3025–3036 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Kwon, M. Y. & Woo, S. Y. Plants’ responses to drought and shade environments. Afr. J. Biotech. 15, 29–31 (2016).

    CAS 

    Google Scholar 

  • 13.

    Santos, J. C., Leal, I. R., Almeida-Cortez, J. S., Fernandes, G. W. & Tabarelli, M. Caatinga: the scientific negligence experienced by a dry tropical forest. Tropical Conservation Science 4, 276–286 (2011).

    Google Scholar 

  • 14.

    Almazroui, M., Islanm, M. N., Saeed, F., Alkhalaf, A. K. & Dambul, R. Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula. Atmos. Res. 194, 202–213 (2017).

    Google Scholar 

  • 15.

    Angulo-Brown, F., Sánchez-Salas, N., Barranco-Jiménez, M. A. & Rosales, M. A. Possible future scenarios for atmospheric concentration of greenhouse gases: A simplified thermodynamic approach. Renewable Energy 34, 2344–2352 (2009).

    CAS 

    Google Scholar 

  • 16.

    Glotfelty, T. & Zhang, Y. Impact of future climate policy scenarios on air quality and aerosol-cloud interactions using an advanced version of CESM/CAM5: Part II. Future trend analysis and impacts of projected anthropogenic emissions. Atmos. Environ. 152, 531–552 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 17.

    O’Neill, B. C. et al. IPCC reasons for concern regarding climate change risks. Nat. Clim. Change 7, 28–37 (2017).

    ADS 

    Google Scholar 

  • 18.

    Hulshof et al. Plant Functional Trait Variation in Tropical Dry Forests: A Review and Synthesis in Tropical Dry Forests in the Americas (ed. Sánchez-Azofeifa, A. et al.) 129–140 (2014).

  • 19.

    Mendes, K. R. et al. Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Sci. Rep. 10, 9454 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Poulter, B. et al. Contribuition of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–604 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Campos, S. et al. Closure and partitioning of the energy balance in a preserved area of a Brazilian seasonally dry tropical forest. Agric. For. Meteorol. 471, 398–412 (2019).

    ADS 

    Google Scholar 

  • 22.

    Zappi, D. et al. Growing knowledge: An overview of seed plant diversity in Brazil. Rodriguésia 66, 1085–1113 (2015).

    Google Scholar 

  • 23.

    Pompelli, M. F., Pompelli, G. M., Cabrini, E. C., Alves, C. J. L. & Ventrella, M. C. Leaf anatomy, ultrastructure and plasticity of Coffea arabica L. in response to light and nitrogen availability. Biotemas 25, 13–28 (2012).

    Google Scholar 

  • 24.

    Rossatto, D. R. & Kolb, R. M. (2010) Gochnatia polymorpha (Less) Cabrera (Asteraceae) changes in leaf structure due to differences in light and edaphic conditions. Acta Bot. Bras. 24, 605–612 (2010).

    Google Scholar 

  • 25.

    Liu, Y. et al. Does greater specific leaf area plasticity help plants to maintain a high performance when shaded?. Ann. Bot. 118, 1329–1336 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Pompelli, M. F., Martins, S. C., Celin, E. F., Ventrella, M. C. & Da Matta, F. M. What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions?. Braz. J. Biol. 70, 1083–1088 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Björkman, O. Responses to different quantum flux densities. In Encyclopaedia of Plant Physiology (eds Lange, O. L. et al.) (Springer, Berlin, 1981).

    Google Scholar 

  • 28.

    Robakowski, P., Wyka, T., Samardakiewicz, S. & Kierzkowski, D. Growth, photosynthesis, and needle structure of silver fir (Abies alba Mill) seedlings under different canopies. For. Ecol. Manag. 201, 211–227 (2004).

    Google Scholar 

  • 29.

    Sam, O., Jeréz, E., Dell’Amico, J. & Ruiz-Sanchez, M. C. Water stress induced changes in anatomy of tomato leaf epidermes. Biol. Plant. 43, 275–277 (2000).

    Google Scholar 

  • 30.

    Shao, H. B., Chu, L.-Y., Jaleel, C. A. & Zhao, D. Water-deficit stress-induced anatomical changes in higher plants. C.R. Biol. 331, 215–225 (2008).

    PubMed 

    Google Scholar 

  • 31.

    Chartzoulakis, K., Patakas, A., Kofidis, G., Bosabalidis, A. & Nastou, A. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci. Hortic. 95, 39–50 (2002).

    CAS 

    Google Scholar 

  • 32.

    Ennajeh, M., Vadel, A. M., Cochard, H. & Khemira, H. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J. Hortic. Sci. Biotechnol. 85, 289–294 (2010).

    Google Scholar 

  • 33.

    Oguchi, R., Hikosaka, K. & Hirose, T. Does the photosynthetic light-acclimation need change in leaf anatomy?. Plant Cell Environ. 26, 505–512 (2003).

    Google Scholar 

  • 34.

    Johnson, D., Meinzer, F., Woodruff, D. & McCulloh, K. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant Cell Environ. 32, 828–836 (2009).

    PubMed 

    Google Scholar 

  • 35.

    Tyree, M. & Sperry, J. B. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Biol. 40, 19–36 (1989).

    Google Scholar 

  • 36.

    McKown, A., Cochard, H. & Sack, L. Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. Am. Nat. 175, 447–460 (2010).

    PubMed 

    Google Scholar 

  • 37.

    Nardini, A., Pedà, G. & Rocca, N. Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho-anatomical bases, carbon costs and ecological consequences. New Phytol. 196, 788–798 (2012).

    PubMed 

    Google Scholar 

  • 38.

    Nunes, A. et al. Plants used to feed ruminants in semi-arid Brazil: A study of nutritional composition guided by local ecological knowledge. J. Arid Environ. 135, 96–103 (2016).

    ADS 

    Google Scholar 

  • 39.

    Santos, A. C. J. & Melo, J. I. M. Flora vascular de uma área de caatinga no estado da Paraíba – Nordeste do Brasil. Revista Caatinga 23, 32–40 (2010).

    Google Scholar 

  • 40.

    Flexas, J. et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 39, 965–982 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Flexas, J. & Medrano, H. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 89, 183–189 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    He, W. & Zhang, X. Responses of an evergreen shrub Sabina vulgaris to soil water and nutrient shortages in the semi-arid Mu Us Sandland in China. J. Arid Environ. 53, 307–316 (2003).

    ADS 

    Google Scholar 

  • 43.

    Pinho-Pessoa, A. C. B. et al. Interannual variation in temperature and rainfall can modulate the physiological and photoprotective mechanisms of a native semiarid plant species. Indian J. Sci. Technol. 11, 1–17 (2018).

    CAS 

    Google Scholar 

  • 44.

    Reddy, T., Reddy, V. & Anbumozhi, V. Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: A critical review. Plant Growth Regul. 41, 75–88 (2003).

    CAS 

    Google Scholar 

  • 45.

    Thakur, P. & Sood, R. Drought tolerance of multipurpose agroforestry tree species during first and second summer droughts after transplanting. Indian J. Plant Physiol. 10, 32–40 (2005).

    Google Scholar 

  • 46.

    Leigh, A., Sevanto, S., Close, J. D. & Nicotra, A. B. The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions?. Plant, Cell Environ. 40, 237–248 (2016).

    Google Scholar 

  • 47.

    Markesteijn, L., Poorter, L. & Bongers, F. Light-dependent leaf trait variation in 43 tropical dry forest tree species. Am. J. Bot. 94, 515–525 (2007).

    PubMed 

    Google Scholar 

  • 48.

    Gotsch, S., Powers, J. & Lerdau, M. Leaf traits and water relations of 12 evergreen species in Costa Rican wet and dry forests: patterns of intra-specific variation across forests and seasons. Plant Ecol. 211, 133–146 (2010).

    Google Scholar 

  • 49.

    Popma, J. & Bongers, F. The effect of canopy gaps on growth and morphology of seedlings of rain forest species. Oecologia 75, 625–632 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Evans, J. R. & Poorter, H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 24, 755–767 (2001).

    CAS 

    Google Scholar 

  • 51.

    Pompelli, M. F. et al. Mesophyll thickness and sclerophylly among Calotropis procera morphotypes reveal water-saved adaptation to environments. J Arid Land. 11, 795–810 (2019).

    Google Scholar 

  • 52.

    Leigh, A., Sevanto, S., Close, J. & D & Nicotra A. B.,. The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions?. Plant Cell Environ. 40, 237–248 (2016).

    PubMed 

    Google Scholar 

  • 53.

    Gil-Pelegrín, E., Saz, M. A., Cuadrat, J. M., Peguero-Pina, J. J. & Sancho-Knapik, D. Oaks Under Mediterranean-Type Climates: Functional Response to Summer Aridity. In Oaks Physiological Ecology Exploring the Functional Diversity of Genus Quercus L (eds Gil-Pelegrín, E. et al.) 137–193 (Springer, London, 2017).

    Google Scholar 

  • 54.

    Chazdon, R. L. & Kaufmann, S. Plasticity of leaf anatomy of two rain forest shrubs in relation to photosynthetic light acclimation. Funct. Ecol. 7, 385–394 (1993).

    Google Scholar 

  • 55.

    Smith, W., Vogelmann, T., De Lucia, E., Bell, D. & Shepherd, K. Leaf form and photosynthesis: Do leaf structure and orientation interact to regulate internal light and carbon dioxide?. Bioscience 47, 785–793 (1997).

    Google Scholar 

  • 56.

    Boanares, D., Isaias, R. R. M. S., Sousa, H. C. & Kozovits, A. R. Strategies of leaf water uptake based on anatomical traits. Plant Biol. 20, 848–856 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Fah, N. A. Plant Anatomy. 2nd ed, Oxford,USA, Butterworth Heinemann (1990).

  • 58.

    Holbrook, N.M. Water Balance of Plants. In: Taiz L, Zeiger E eds. Plant Physiology, 5th ed. Sunderland, Sinauer Associates Inc (2010).

  • 59.

    Glover, B. Differentiation in plant epidermal cells. J. Exp. Bot. 51, 497–505 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Vogelman, T., Nishio, J. & Smith, W. Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends Plant Sci. 1, 65–70 (1996).

    Google Scholar 

  • 61.

    Fini, A. M. et al. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiol. Plant. 157, 54–68 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Oguchi, R., Hikosaka, K. & Hirose, T. Leaf anatomy as a constraint for photosynthetic acclimation: Differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant, Cell Environ. 28, 916–927 (2005).

    Google Scholar 

  • 63.

    Pollastrini, M. et al. Interaction and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology. Plant Biol. 16, 323–331 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Sevillano, I., Short, I., Grant, J. & O’Reilly, C. Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings. For. Ecol. Manag. 374, 11–19 (2016).

    Google Scholar 

  • 65.

    Nguyen, H. T., Radacsi, P., Gosztola, B. & Nemeth, E. Effects of temperature and light intensity on morphological and phytochemical characters and antioxidant potential of wormwood (Artemisia absinthium L.). Biochem. Syst. Ecol. 79, 1–7 (2018).

    CAS 

    Google Scholar 

  • 66.

    Boardman, N. K. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiol. 28, 355–377 (1977).

    CAS 

    Google Scholar 

  • 67.

    Bejaoui, F. et al. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. J. Plant Physiol. 198, 32–38 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Van Rensburg, L., Krüger, G. H. J. & Krüger, H. Proline accumulation as drought-tolerance selection criterion: Its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. J. Plant Physiol. 141, 188–194 (1993).

    Google Scholar 

  • 69.

    Westoby, M. & Wright, I. The leaf size – twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135, 621–628 (2003).

    ADS 
    PubMed 

    Google Scholar 

  • 70.

    Scoffoni, C. et al. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytol. 213, 1076–1092 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Sack, L. & Scoffoni, C. Leaf venation: Structure, function, development, evolution, ecology andapplications in the past, present and future. New Phytol. 198, 983–1000 (2013).

    PubMed 

    Google Scholar 

  • 72.

    Brodribb, T., Holbrook, N., Edwards, E. & Gutierrez, M. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 26, 443–450 (2003).

    Google Scholar 

  • 73.

    Scoffoni, C. et al. Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytol. 207, 43–58 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Mendes, K. R. & Marenco, R. A. Leaf traits and gas exchange in saplings of native tree species in the Central Amazon. Scientia Agricola 67, 624–632 (2010).

    Google Scholar 

  • 75.

    Puglielli, G., Varone, L., Gratani, L. & Catoni, R. Specific leaf area variations drive acclimation of Cistus salvifolius in different light environments. Photosynthetica 55, 31–40 (2017).

    CAS 

    Google Scholar 

  • 76.

    O’Brien, T., Feder, N. & McCully, M. Polychromatic staining of plant cell walls by toluidine blue. Protoplasma 59, 368–373 (1965).

    Google Scholar 

  • 77.

    Karnovsky, M. J. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137–138 (1965).

    Google Scholar 

  • 78.

    Spurr, A. R. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Reynolds, E. S. The use of load citrate at a high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Hardoon, D. R., Szedmak, S. & Shawe-Taylor, J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16, 2639–2664 (2004).

    PubMed 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks

    Bringing climate reporting to local newsrooms