in

Exploring how functional traits modulate species distributions along topographic gradients in Baxian Mountain, North China

  • 1.

    Díaz, S., Cabido, M. & Casanoves, F. Functional implications of trait-environment linkages in plant communities. Ecolog. Assem. Rules Perspect. Adv. Retreat. 26, 338–362 (1999).

    Google Scholar 

  • 2.

    Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18(2), 137–149. https://doi.org/10.1111/j.1466-8238.2008.00441.x (2009).

    Article 

    Google Scholar 

  • 3.

    Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33(1), 125–159 (2002).

    Google Scholar 

  • 4.

    Brown, A. M. et al. The fourth-corner solution–using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5(4), 344–352. https://doi.org/10.1111/2041-210X.12163 (2014).

    Article 

    Google Scholar 

  • 5.

    Jamil, T., Ozinga, W. A., Kleyer, M. & ter Braak, C. J. F. Selecting traits that explain species–environment relationships: a generalized linear mixed model approach. J. Veg. Sci. 24(6), 988–1000 (2013).

    Google Scholar 

  • 6.

    Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35(8), 716–725 (2012).

    Google Scholar 

  • 7.

    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Google Scholar 

  • 8.

    Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T. & Svenning, J.-C. Topography as a driver of local terrestrial vascular plant diversity patterns. Nord. J. Bot. 31(2), 129–144. https://doi.org/10.1111/j.1756-1051.2013.00082.x (2013).

    Article 

    Google Scholar 

  • 9.

    Burnett, B. N., Meyer, G. A. & McFadden, L. D. Aspect-related microclimatic influences on slope forms and processes, Northeastern Arizona. J. Geophys. Res. Earth Surf. 113(3), 129. https://doi.org/10.1029/2007JF000789 (2008).

    Article 

    Google Scholar 

  • 10.

    Hais, M., Chytrý, M. & Horsák, M. Exposure-related forest-steppe: a diverse landscape type determined by topography and climate. J. Arid Environ. 135, 75–84. https://doi.org/10.1016/j.jaridenv.2016.08.011 (2016).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Holden, Z. A. & Jolly, W. M. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support. Forest Ecol. Manag. 262(12), 2133–2141. https://doi.org/10.1016/j.foreco.2011.08.002 (2011).

    Article 

    Google Scholar 

  • 12.

    Dyer, J. M. Assessing topographic patterns in moisture use and stress using a water balance approach. Landscape Ecol. 24(3), 391–403. https://doi.org/10.1007/s10980-008-9316-6 (2009).

    Article 

    Google Scholar 

  • 13.

    Lan, G., Hu, Y., Cao, M. & Zhu, H. Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. Forest Ecol. Manag. 262(8), 1507–1513. https://doi.org/10.1016/j.foreco.2011.06.052 (2011).

    Article 

    Google Scholar 

  • 14.

    Punchi-Manage, R. et al. Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. J. Ecol. 101(1), 149–160. https://doi.org/10.1111/1365-2745.12017 (2013).

    Article 

    Google Scholar 

  • 15.

    Rubino, D. L. & McCarthy, B. C. Evaluation of coarse woody debris and forest vegetation across topographic gradients in a southern Ohio forest. Forest Ecol. Manag. 183(1), 221–238. https://doi.org/10.1016/S0378-1127(03)00108-7 (2003).

    Article 

    Google Scholar 

  • 16.

    Sefidi, K., Esfandiary Darabad, F. & Azaryan, M. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. IForest-Biogeosciences and Forestry 9(4), 658 (2016).

    Google Scholar 

  • 17.

    Liu, J., Yunhong, T. & Slik, J. F. Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest. Forest Ecol. Manag. 330, 75–81 (2014).

    Google Scholar 

  • 18.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529(7585), 167 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • 19.

    Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199(2), 213–227 (1998).

    CAS 

    Google Scholar 

  • 20.

    King, D. A. The adaptive significance of tree height. Am. Nat. 135(6), 809–828 (1990).

    Google Scholar 

  • 21.

    Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428(6985), 851–854 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Mäkelä, A. Implications of the pipe model theory on dry matter partitioning and height growth in trees. J. Theor. Biol. 123(1), 103–120 (1986).

    ADS 

    Google Scholar 

  • 23.

    King, D. Tree dimensions: maximizing the rate of height growth in dense stands. Oecologia 51(3), 351–356 (1981).

    ADS 
    PubMed 

    Google Scholar 

  • 24.

    Hoch, G., Popp, M. & Körner, C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98(3), 361–374. https://doi.org/10.1034/j.1600-0706.2002.980301.x (2002).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4), 445–459 (1998).

    ADS 
    PubMed 

    Google Scholar 

  • 26.

    Hoch, G. & Körner, C. Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. J. Ecol. 97(1), 57–66. https://doi.org/10.1111/j.1365-2745.2008.01447.x (2009).

    Article 

    Google Scholar 

  • 27.

    Hoch, G. & Körner, C. Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob. Ecol. Biogeogr. 21(8), 861–871. https://doi.org/10.1111/j.1466-8238.2011.00731.x (2012).

    Article 

    Google Scholar 

  • 28.

    Shi, P., Körner, C. & Hoch, G. A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Funct. Ecol. 22(2), 213–220. https://doi.org/10.1111/j.1365-2435.2007.01370.x (2008).

    Article 

    Google Scholar 

  • 29.

    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants https://doi.org/10.1093/aobpla/plx054 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Hendrickson, L., Ball, M. C., Wood, J. T., Chow, W. S. & Furbank, R. T. Low temperature effects on photosynthesis and growth of grapevine. Plant Cell Environ. 27(7), 795–809. https://doi.org/10.1111/j.1365-3040.2004.01184.x (2004).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Körner, C. & Hoch, G. A test of treeline theory on a montane permafrost island. Arct. Antarct. Alp. Res. 38(1), 113–119 (2006).

    Google Scholar 

  • 32.

    Muller-Landau, H. C. The tolerance–fecundity trade-off and the maintenance of diversity in seed size. Proc. Natl. Acad. Sci. 107(9), 4242–4247 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Lloret, F., Casanovas, C. & Peñuelas, J. Seedling survival of Mediterranean shrubland species in relation to root: shoot ratio, seed size and water and nitrogen use. Funct. Ecol. 13(2), 210–216. https://doi.org/10.1046/j.1365-2435.1999.00309.x (1999).

    Article 

    Google Scholar 

  • 34.

    Quero, J. L., Villar, R., Marañón, T., Zamora, R. & Poorter, L. Seed-mass effects in four Mediterranean Quercus species (Fagaceae) growing in contrasting light environments. Am. J. Bot. 94(11), 1795–1803. https://doi.org/10.3732/ajb.94.11.1795 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 35.

    Hallett, L. M., Standish, R. J. & Hobbs, R. J. Seed mass and summer drought survival in a Mediterranean-climate ecosystem. Plant Ecol. 212(9), 1479. https://doi.org/10.1007/s11258-011-9922-2 (2011).

    Article 

    Google Scholar 

  • 36.

    McFadden, I. R. et al. Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology 100(3), e02591. https://doi.org/10.1002/ecy.2591 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 37.

    Moles, A. T. & Westoby, M. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92(3), 372–383. https://doi.org/10.1111/j.0022-0477.2004.00884.x (2004).

    Article 

    Google Scholar 

  • 38.

    Shipley, B. et al. Predicting habitat affinities of plant species using commonly measured functional traits. J. Veg. Sci. 28(5), 1082–1095. https://doi.org/10.1111/jvs.12554 (2017).

    Article 

    Google Scholar 

  • 39.

    Willson, C. J. & Jackson, R. B. Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species. Physiol. Plant. 127(3), 374–382 (2006).

    CAS 

    Google Scholar 

  • 40.

    Peguero-Pina, J. J. et al. Hydraulic traits are associated with the distribution range of two closely related Mediterranean firs, Abies alba Mill. and Abies pinsapo Boiss. Tree Physiol. 31(10), 1067–1075 (2011).

    PubMed 

    Google Scholar 

  • 41.

    Tyree, M. & Sperry, J. Vulnerability of xylem to cavitation and embolism. Ann. Rev. Plant Biol 40, 19–36 (1989).

    Google Scholar 

  • 42.

    Wubbels, J. (2010). Tree Species Distribution in Relation to Stem Hydraulic Traits and Soil Moisture in a Mixed Hardwood Forest in Central Pennsylvania.

  • 43.

    Perez-Harguindeguy, N. et al. Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 64(8), 715–716 (2016).

    Google Scholar 

  • 44.

    Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol. 221(3), 1457–1465 (2019).

    PubMed 

    Google Scholar 

  • 45.

    Ahrens, C. W., Rymer, P. D. & Tissue, D. T. Intra-specific trait variation remains hidden in the environment. New Phytol. 2, 1183–1185 (2021).

    Google Scholar 

  • 46.

    Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18(12), 1406–1419 (2015).

    PubMed 

    Google Scholar 

  • 47.

    Benito Garzón, M., Alía, R., Robson, T. M. & Zavala, M. A. Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob. Ecol. Biogeogr. 20(5), 766–778 (2011).

    Google Scholar 

  • 48.

    Henn, J. J. et al. Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Front. Plant Sci. 9, 1548 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Zhang, B. et al. Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Funct. Ecol. 34(12), 2622–2633 (2020).

    Google Scholar 

  • 50.

    Xu, H., Wang, H., Prentice, I. C., Harrison, S. P. & Wright, I. J. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. New Phytol. 2, 90387 (2021).

    Google Scholar 

  • 51.

    Yang, Y. et al. Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytol. 221(1), 155–168 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Li, X., Lu, H., Yu, L. & Yang, K. Comparison of the spatial characteristics of four remotely sensed leaf area index products over China: Direct validation and relative uncertainties. Remote Sens. 10(1), 148 (2018).

    ADS 

    Google Scholar 

  • 53.

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Sci. Rep. 3, 1069 (2007).

    Google Scholar 

  • 54.

    Gittleman, J. L. & Kot, M. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39(3), 227–241 (1990).

    Google Scholar 

  • 55.

    Reich, P. B., Wright, I. J. & Lusk, C. H. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol. Appl. 17(7), 1982–1988 (2007).

    PubMed 

    Google Scholar 

  • 56.

    Leishman, M. R., Wright, I. J., Moles, A. T. & Westoby, M. The evolutionary ecology of seed size. Seeds Ecol. Regener. Plant Commun. 2, 31–57 (2000).

    Google Scholar 

  • 57.

    Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Change Biol. 26(1), 119–188 (2020).

    ADS 

    Google Scholar 

  • 58.

    Wang, H. et al. The China plant trait database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99(2), 1039 (2018).

    Google Scholar 

  • 59.

    Knapp, B. O., Wang, G. G., Clark, S. L., Pile, L. S. & Schlarbaum, S. E. Leaf physiology and morphology of Castanea dentata (Marsh.) Borkh., Castanea mollissima Blume, and three backcross breeding generations planted in the southern Appalachians, USA. New Forests 45(2), 283–293 (2014).

    Google Scholar 

  • 60.

    Chen, L. et al. Seed dispersal and seedling recruitment of trees at different successional stages in a temperate forest in northeastern China. J. Plant Ecol. 7(4), 337–346 (2014).

    Google Scholar 

  • 61.

    Marchi, S., Tognetti, R., Minnocci, A., Borghi, M. & Sebastiani, L. Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and an evergreen Sclerophyllous Mediterranean shrub (Olea europaea). Trees 22(4), 559 (2008).

    CAS 

    Google Scholar 

  • 62.

    Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27(15), 2865–2873 (2008).

    MathSciNet 
    PubMed 

    Google Scholar 

  • 63.

    Miller, J. E. D., Damschen, E. I. & Ives, A. R. Functional traits and community composition: a comparison among community-weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 10(3), 415–425. https://doi.org/10.1111/2041-210X.13119 (2019).

    Article 

    Google Scholar 

  • 64.

    Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A. & Liu, J. A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika 78(4), 685–709 (2013).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • 65.

    Boyd, K., Costa, V. S., Davis, J., & Page, C. D. (2012). Unachievable region in precision-recall space and its effect on empirical evaluation. in Proceedings of the International Conference on Machine Learning. International Conference on Machine Learning, 2012, 349. NIH Public Access.

  • 66.

    Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the precision-recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10(4), 565–577 (2019).

    Google Scholar 

  • 67.

    Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics 31(15), 2595–2597 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Keilwagen, J., Grosse, I. & Grau, J. Area under precision-recall curves for weighted and unweighted data. PloS One 9(3), e92209 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Saito, T. & Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One 10(3), e0118432 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • 71.

    Schmitt, S. et al. Topography consistently drives intra-and inter-specific leaf trait variation within tree species complexes in a Neotropical forest. Oikos 129(10), 1521–1530 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks

    Bringing climate reporting to local newsrooms