in

Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti

  • 1.

    Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    W. H. O. Multisectoral approach to the prevention and control of vector-borne diseases (2020).

  • 3.

    Ryan, S. J. et al. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob. Change Biol. 27, 84–93 (2021).

    Google Scholar 

  • 4.

    Iwamura, T., Guzman-Holst, A. & Murray, K. A. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat. Commun. 11, 2130 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).

    PubMed 

    Google Scholar 

  • 6.

    Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, 1–67 (2020).

    Google Scholar 

  • 7.

    Couret, J., Dotson, E. & Benedict, M. Q. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE 9, 1–9 (2014).

    Google Scholar 

  • 8.

    Barreaux, A. M. G., Stone, C. M., Barreaux, P. & Koella, J. C. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasites Vectors 11, 485 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Huxley, P. J., Murray, K. A., Pawar, S. & Cator, L. J. The effect of resource limitation on the temperature dependence of mosquito population fitness. Proc. R. Soc. B: Biol. Sci. 288, rspb.2020.3217 (2021).

  • 10.

    Ostfeld, R. S. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Beltran, R. S. et al. Seasonal resource pulses and the foraging depth of a Southern Ocean top predator. Proc. R. Soc. B: Biol. Sci. 288, rspb.2020.2817 (2021).

  • 12.

    Yang, L. H., Bastow, J. L., Spence, K. O. & Wright, A. N. What can we learn from resource pulses? Ecology 89, 621–634 (2008).

    PubMed 

    Google Scholar 

  • 13.

    Dye, C. Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J. Animal Ecol. 53, 247 (1984).

    Google Scholar 

  • 14.

    Southwood, T. R., Murdie, G., Yasuno, M., Tonn, R. J. & Reader, P. M. Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull. World Health Organ. 46, 211–226 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Arrivillaga, J. & Barrera, R. Food as a limiting factor for Aedes aegypti in water-storage containers. J. Vector Ecol. 29, 11–20 (2004).

    PubMed 

    Google Scholar 

  • 16.

    Barrera, R., Amador, M. & Clark, G. G. Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. J. Med. Entomol. 43, 484–492 (2006).

    PubMed 

    Google Scholar 

  • 17.

    Yee, D. A. & Juliano, S. A. Concurrent effects of resource pulse amount, type, and frequency on community and population properties of consumers in detritus-based systems. Oecologia 169, 511–522 (2012).

    PubMed 

    Google Scholar 

  • 18.

    Subra, R. & Mouchet, J. The regulation of preimaginal populations of Aedes aegypti (L.) (Diptera: Culicidae) on the Kenya coast. Ann. Trop. Med. Parasitol. 78, 63–70 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Amarasekare, P. & Savage, V. A framework for elucidating the temperature dependence of fitness. Am. Nat. 179, 178–191 (2012).

    PubMed 

    Google Scholar 

  • 20.

    Huey, R. B. & Kingsolver, J. G. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194, 6 (2019).

  • 21.

    García-Carreras, B. et al. Role of carbon allocation efficiency in the temperature dependence of autotroph growth rates. Proc. Natl Acad. Sci. USA 115, E7361–E7368 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Smith, T. P., Clegg, T., Bell, T. & Pawar, S. Systematic variation in the temperature dependence of bacterial carbon use efficiency. Ecol. Lett. 24, 2123–2133 (2021).

    PubMed 

    Google Scholar 

  • 23.

    Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).

    Google Scholar 

  • 24.

    Amarasekare, P. Effects of climate warming on consumer-resource interactions: a latitudinal perspective. Front. Ecol. Evol. 7, 1–15 (2019).

  • 25.

    Amarasekare, P. & Simon, M. W. Latitudinal directionality in ectotherm invasion success. Proc. R. Soc. B: Biol. Sci. 287, 20191411 (2020).

    Google Scholar 

  • 26.

    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Change Biol. 21, 1025–1040 (2015).

    Google Scholar 

  • 28.

    Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Thomas, M. K. et al. Temperature-nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).

    Google Scholar 

  • 30.

    Siegel, P., Baker, K. G., Low‐Décarie, E. & Geider, R. J. High predictability of direct competition between marine diatoms under different temperatures and nutrient states. Ecol. Evol. 10, 7276–7290 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Bestion, E., García-Carreras, B., Schaum, C.-E., Pawar, S. & Yvon-Durocher, G. Metabolic traits predict the effects of warming on phytoplankton competition. Ecol. Lett. 21, 655–664 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Jackson, C. flexsurv: A Platform for Parametric Survival Modeling in R. J. Stat. Softw. 70, 1–33 (2016).

    Google Scholar 

  • 33.

    Bellows, T. S. The descriptive properties of some models for density dependence. J. Animal Ecol. 50, 139–156 (1981).

    Google Scholar 

  • 34.

    Orcutt, J. D. & Porter, K. G. The synergistic effects of temperature and food concentration of life history parameters of Daphnia. Oecologia 63, 300–306 (1984).

    PubMed 

    Google Scholar 

  • 35.

    Huey, R. B. & Berrigan, D. Temperature, demography, and ectotherm fitness. Am. Nat. 158, 204–210 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Caswell, H. A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor. Popul. Biol. 14, 215–230 (1978).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Kammenga, J. E., Busschers, M., Straalen, N. M., Van, Jepson, P. C. & Bakker, J. Stress induced fitness reduction is not determined by the most sensitive life-cycle trait. Funct. Ecol. 10, 106 (1996).

    Google Scholar 

  • 38.

    Cator, L. J. et al. The role of vector trait variation in vector-borne disease dynamics. Front. Ecol. Evol. 8, 1–25 (2020).

    Google Scholar 

  • 39.

    Juliano, S. A. Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition? Ecology 79, 255 (1998).

    Google Scholar 

  • 40.

    Shapiro, L. L. M., Murdock, C. C., Jacobs, G. R., Thomas, R. J. & Thomas, M. B. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proc. R. Soc. B: Biol. Sci. 283, 20160298 (2016).

    Google Scholar 

  • 41.

    Carvajal-Lago, L., Ruiz-López, M. J., Figuerola, J. & Martínez-de la Puente, J. Implications of diet on mosquito life history traits and pathogen transmission. Environ. Res. 195, 110893 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Reiner, R. C. et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010. J. R. Soc. Interface 10, 20120921–20120921 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Farjana, T., Tuno, N. & Higa, Y. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Med.Vet. Entomol. 26, 210–217 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Kooijman, S. A. L. M. Dynamic energy and mass budgets in biological systems. (Cambridge University Press, 2000).

  • 45.

    Merritt, R. W., Dadd, R. H. & Walker, E. D. Feeding behaviour, natural food, and nutritional relationships and larval mosquitoes. Annu. Rev. Entomol. 37, 349–376 (1992).

  • 46.

    Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854–857 (2010).

    CAS 

    Google Scholar 

  • 47.

    Smith, T. P. et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat. Commun. 10, 5124 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Yee, D. A., Kaufman, M. G. & Juliano, S. A. The significance of ratios of detritus types and micro-organism productivity to competitive interactions between aquatic insect detritivores. J. Animal Ecol. 76, 1105–1115 (2007).

    Google Scholar 

  • 49.

    Chouaia, B. et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 12, S2 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Souza, R. S. et al. Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Front. Physiol. 10, 1–24 (2019).

    Google Scholar 

  • 51.

    Dickson, L. B. et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv. 3, e1700585 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Hery, L. et al. Natural variation in physicochemical profiles and bacterial communities associated with Aedes aegypti breeding sites and larvae on Guadeloupe and French Guiana. Microbial Ecol. 81, 93–109 (2021).

    CAS 

    Google Scholar 

  • 53.

    Liikanen, A., Murtoniemi, T., Tanskanen, H., Väisänen, T. & Martikainen, P. J. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry 59, 269–286 (2002).

    CAS 

    Google Scholar 

  • 54.

    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    CAS 

    Google Scholar 

  • 56.

    Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).

    Google Scholar 

  • 57.

    Steinwascher, K. Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti. Environ. Entomol. 11, 150–153 (1982).

    Google Scholar 

  • 58.

    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol., Evol. Syst. 37, 637–669 (2006).

    Google Scholar 

  • 60.

    Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Bargielowski, I. E., Lounibos, L. P. & Carrasquilla, M. C. Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. Proc. Natl Acad. Sci. USA 110, 2888–2892 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Arguez, A. et al. NOAA’s 1981–2010 U.S. climate normals: an overview. Bull. Am. Meteorol. Soc. 93, 1687–1697 (2012).

    Google Scholar 

  • 63.

    Caswell, H. Matrix population models construction, analysis, and interpretation. Nat. Resource Model. (Sinauer Associates, 1989).

  • 64.

    Birch, L. C. The intrinsic rate of natural increase of an insect population. J. Animal Ecol. 17, 15 (1948).

    Google Scholar 

  • 65.

    Cole, L. C. The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    R. Core Team. R: A language and environment for statistical computing. (2018).

  • 67.

    Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio Package in R. J. Stat. Softw. 22, 1–23 (2007).

    Google Scholar 

  • 68.

    Therneau, T. A Package for Survival Analysis in R. (2021).

  • 69.

    Agnew, P., Hide, M., Sidobre, C. & Michalakis, Y. A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol. Entomol. 27, 396–402 (2002).

    Google Scholar 

  • 70.

    Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483 (1993).

    Google Scholar 

  • 71.

    Livdahl, T. P. & Sugihara, G. Non-linear interactions of populations and the importance of estimating per capita rates of change. J. Animal Ecol. 53, 573 (1984).

    Google Scholar 

  • 72.

    Juliano, S. A. & Lounibos, L. P. Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol. Lett. 8, 558–574 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    van den Heuvel, M. J. The effect of rearing temperature on the wing length, thorax length, leg length and ovariole number of the adult mosquito, Aedes aegypti (L.). Trans. R. Entomol. Soc. Lond. 115, 197–216 (1963).

    Google Scholar 

  • 74.

    Farjana, T. & Tuno, N. Effect of body size on multiple blood feeding and egg retention of Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae). Med. Entomol. Zool. 63, 123–131 (2012).

    Google Scholar 

  • 75.

    Skalski, J. R., Millspaugh, J. J., Dillingham, P. & Buchanan, R. A. Calculating the variance of the finite rate of population change from a matrix model in Mathematica. Environ. Model. Softw. 22, 359–364 (2007).

    Google Scholar 

  • 76.

    Hope, R. M. Rmisc: Rmisc: Ryan Miscellaneous. (2013).

  • 77.

    Caswell, H., Naiman, R. J. & Morin, R. Evaluating the consequences of reproduction in complex salmonid life cycles. Aquaculture 43, 123–134 (1984).

    Google Scholar 

  • 78.

    de Kroon, H., Plaisier, A., van Groenendael, J. & Caswell, H. Elasticity: the relative contribution of demographic parameters to population growth rate. Ecology 67, 1427–1431 (1986).

    Google Scholar 

  • 79.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Statist. Softw. 67, (2015).

  • 80.

    Padfield, D., O’Sullivan, H. & Pawar, S. rTPC and nls.multstart: a new pipeline to fit thermal performance curves in R. Methods Ecol. Evol. 12, 1138–1143 (2021).

    Google Scholar 

  • 81.

    Lactin, D. J., Holliday, N. J., Johnson, D. L. & Craigen, R. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68–75 (1995).

    Google Scholar 

  • 82.

    Kamykowski, D. & McCollum, S. A. The temperature acclimatized swimming speed of selected marine dinoflagellates. J. Plankton Res. 8, 275–287 (1986).

    Google Scholar 


  • Source: Ecology - nature.com

    Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks

    Bringing climate reporting to local newsrooms