Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720. https://doi.org/10.1038/379718a0 (1996).
Google Scholar
Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127. https://doi.org/10.1126/science.286.5442.1123 (1999).
Google Scholar
Kirwan, L. et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J. Ecol. 95, 530–539. https://doi.org/10.1111/j.1365-2745.2007.01225.x (2007).
Google Scholar
Sturludóttir, E. et al. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass Forage Sci. 69, 229–240. https://doi.org/10.1111/gfs.12037 (2014).
Google Scholar
Roscher, C. et al. Overyielding in experimental grassland communities – irrespective of species pool or spatial scale. Ecol. Lett. 8, 419–429. https://doi.org/10.1111/j.1461-0248.2005.00736.x (2005).
Google Scholar
Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 1–5. https://doi.org/10.1038/nplants.2015.33 (2015).
Google Scholar
Fridley, J. D. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132, 271–277. https://doi.org/10.1007/s00442-002-0965-x (2002).
Google Scholar
Sanderson, M. A. et al. Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Sci. 44, 1132–1144. https://doi.org/10.2135/cropsci2004.1132 (2004).
Google Scholar
Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35. https://doi.org/10.1890/04-0922 (2005).
Google Scholar
Spehn, E. M. et al. Ecosystem effects of biodiversity manipulations in European grasslands. Ecol. Monogr. 75, 37–63. https://doi.org/10.1890/03-4101 (2005).
Google Scholar
Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390. https://doi.org/10.1016/j.tree.2017.02.011 (2017).
Google Scholar
Brophy, C. et al. Major shifts in species’ relative abundance in grassland mixtures alongside positive effects of species diversity in yield: a continental-scale experiment. J. Ecol. 105, 1210–1222. https://doi.org/10.1111/1365-2745.12754 (2017).
Google Scholar
Nyfeler, D. et al. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 46, 683–691. https://doi.org/10.1111/j.1365-2664.2009.01653.x (2009).
Google Scholar
Søegaard, K., Gierus, M., Hopkins, A. & Halling, M. Temporary grassland – challenges in the future. Grassl. Sci. Eur. 12, 27–38. https://www.europeangrassland.org/fileadmin/documents/Infos/Printed_Matter/Proceedings/EGF2007_GSE_vol12.pdf (2007).
Høgh-Jensen, H., Nielsen, B. & Thamsborg, S. M. Productivity and quality, competition and facilitation of chicory in ryegrass/legume-based pastures under various nitrogen supply levels. Eur. J. Agron. 24, 247–256. https://doi.org/10.1016/j.eja.2005.10.007 (2006).
Google Scholar
Cong, W. F., Jing, J., Rasmussen, J., Søegaard, K. & Eriksen, J. Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy. Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-01632-4 (2017).
Google Scholar
Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76. https://doi.org/10.1038/35083573 (2001).
Google Scholar
Loreau, M., Sapijanskas, J., Isbell, F. & Hector, A. Niche and fitness differences relate the maintenance of diversity to ecosystem function: comment. Ecology 93, 1482–1487. https://doi.org/10.1890/11-0792.1 (2012).
Google Scholar
Montazeaud, G. et al. Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil 424, 187–202. https://doi.org/10.1007/s11104-017-3496-2 (2018).
Google Scholar
Vermeulen, P. J., Van Ruijven, J., Anten, N. P. & Van der Werf, W. An evolutionary game theoretical model shows the limitations of the additive partitioning method for interpreting biodiversity experiments. J. Ecol. 105, 345–353. https://doi.org/10.1111/1365-2745.12706 (2017).
Google Scholar
Hille Ris Lambers, J. H. R., Harpole, W. S., Tilman, D., Knops, J. & Reich, P. B. Mechanisms responsible for the positive diversity–productivity relationship in Minnesota grasslands. Ecol. Lett. 7, 661–668. https://doi.org/10.1111/j.1461-0248.2004.00623.x (2004).
Marquard, E. et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90, 3290–3302. https://doi.org/10.1890/09-0069.1 (2009).
Google Scholar
Lüscher, A., Suter, M., Finn, J., Collins, R. & Gastal, F. Quantification of the effect of legume proportion in the sward on yield advantage and options to keep stable legume proportions (over climatic zones relevant for livestock production). HAL 7, 1–35. https://hal.archives-ouvertes.fr/hal-01611404 (2014).
Roscher, C., Schumacher, J., Weisser, W. W., Schmid, B. & Schulze, E. D. Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species. Oecologia 154, 535–549. https://doi.org/10.1007/s00442-007-0846-4 (2007).
Google Scholar
Finn, J. A. et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment. J. Appl. Ecol. 50, 365–375. https://doi.org/10.1111/1365-2664.12041 (2013).
Google Scholar
Grange, G., Finn, J. A. & Brophy, C. Plant diversity enhanced yield and mitigated drought impacts in intensively managed grassland communities. J. Appl. Ecol. 58, 1864–1875. https://doi.org/10.1111/1365-2664.13894 (2021).
Google Scholar
Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. U.S.A. 104, 18123–18128. https://doi.org/10.1073/pnas.0709069104 (2007).
Google Scholar
Marquard, E. et al. Changes in the abundance of grassland species in monocultures versus mixtures and their relation to biodiversity effects. PLoS ONE 8, e75599. https://doi.org/10.1371/journal.pone.0075599 (2013).
Google Scholar
Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642. https://doi.org/10.1038/s41559-017-0325-1 (2017).
Google Scholar
Fargione, J. et al. From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc. Royal Soc. B 274, 871–876. https://doi.org/10.1098/rspb.2006.0351 (2007).
Google Scholar
Grant, K., Kreyling, J., Heilmeier, H., Beierkuhnlein, C. & Jentsch, A. Extreme weather events and plant-plant interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecol. Res. 29, 991–1001. https://doi.org/10.1007/s11284-014-1187-5 (2014).
Google Scholar
Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592. https://doi.org/10.1126/science.1217909 (2012).
Google Scholar
Roscher, C., Schmid, B., Kolle, O. & Schulze, E. D. Complementarity among four highly productive grassland species depends on resource availability. Oecologia 181, 571–582. https://doi.org/10.1007/s00442-016-3587-4 (2016).
Google Scholar
Frankow-Lindberg, B. E., Brophy, C., Collins, R. P. & Connolly, J. Biodiversity effects on yield and unsown species invasion in a temperate forage ecosystem. Ann. Bot. 103, 913–921. https://doi.org/10.1093/aob/mcp008 (2009).
Google Scholar
Caradus, J. R. & Woodfield, D. R. World checklist of white clover varieties II. New Zealand J. Agric. Res. 40, 115–206. https://doi.org/10.1080/00288233.1997.9513239 (1997).
Google Scholar
Annicchiarico, P., Barrett, B., Brummer, E. C., Julier, B. & Marshall, A. H. Achievements and challenges in improving temperate perennial forage legumes. Crit. Rev. Plant Sci. 34, 327–380. https://doi.org/10.1080/07352689.2014.898462 (2015).
Google Scholar
Abberton, M. T. & Marshall, A. H. Progress in breeding perennial clovers for temperate agriculture. J. Agric. Sci. 143, 117–135. https://doi.org/10.1017/S0021859605005101 (2005).
Google Scholar
Evans, D. R., Williams, T. A. & Mason, S. A. Contribution of white clover varieties to total sward production under typical farm management. Grass Forage Sci. 45, 129–134. https://doi.org/10.1111/j.1365-2494.1990.tb02193.x (1990).
Google Scholar
Hooper, D. U. & Dukes, J. S. Overyielding among plant functional groups in a long-term experiment. Ecol. Lett. 7, 95–105. https://doi.org/10.1046/j.1461-0248.2003.00555.x (2004).
Google Scholar
Ergon, Å. et al. Species interactions in a grassland mixture under low nitrogen fertilization and two cutting frequencies: 1. dry-matter yield and dynamics of species composition. Grass Forage Sci. 71, 667–682. https://doi.org/10.1111/gfs.12250 (2016).
Google Scholar
Van Ruijven, J. & Berendse, F. Diversity–productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl. Acad. Sci. U.S.A. 102, 695–700. https://doi.org/10.1073/pnas.0407524102 (2005).
Google Scholar
Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180. https://doi.org/10.1016/j.tree.2018.10.013 (2019).
Google Scholar
Annicchiarico, P. Breeding white clover for increased ability to compete with associated grasses. J. Agric. Sci. 140, 255–266. https://doi.org/10.1017/S0021859603003198 (2003).
Google Scholar
Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111. https://doi.org/10.1038/nature13869 (2014).
Google Scholar
Schöb, C. et al. Intraspecific genetic diversity and composition modify species-level diversity–productivity relationships. New Phytol. 205, 720–730. https://doi.org/10.1111/nph.13043 (2015).
Google Scholar
Barot, S. et al. Designing mixtures of varieties for multifunctional agriculture with the help of ecology A review. Agron. Sustain. Dev. 37, 13. https://doi.org/10.1007/s13593-017-0418-x (2017).
Google Scholar
Van Ruijven, J. & Berendse, F. Long-term persistence of a positive plant diversity–productivity relationship in the absence of legumes. Oikos 118, 101–106. https://doi.org/10.1111/j.1600-0706.2008.17119.x (2009).
Google Scholar
Roscher, C. et al. A functional trait-based approach to understand community assembly and diversity–productivity relationships over 7 years in experimental grasslands. Perspect. Plant Ecol. Evol. Syst. 15, 139–149. https://doi.org/10.1016/j.ppees.2013.02.004 (2013).
Google Scholar
Roscher, C., Thein, S., Schmid, B. & Scherer-Lorenzen, M. Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. J. Ecol. 96, 477–488. https://doi.org/10.1111/j.1365-2745.2008.01353.x (2008).
Google Scholar
Kayser, M., Müller, J. & Isselstein, J. Grassland renovation has important consequences for C and N cycling and losses. Food Energy Secur. 7, e00146. https://doi.org/10.1002/fes3.146 (2018).
Google Scholar
Bundessortenamt. Beschreibende Sortenliste Futtergräser Esparsette, Klee, Luzerne 2020. https://www.bundessortenamt.de/bsa/media/Files/BSL/bsl_futtergraeser_2020.pdf (2020).
Rognli, O. A., Pecetti, L., Kovi, M. R. & Annicchiarico, P. Grass and legume breeding matching the future needs of European grassland farming. Grass Forage Sci. 76, 175–185. https://doi.org/10.1111/gfs.12535 (2021).
Google Scholar
Annicchiarico, P. et al. Do we need specific breeding for legume-based mixtures?. Adv. Agron. 157, 141–215. https://doi.org/10.1016/bs.agron.2019.04.001 (2019).
Google Scholar
Sampoux, J. P., Giraud, H. & Litrico, I. Which recurrent selection scheme to improve mixtures of crop species? Theoretical expectations. G3-Genes Genom. Genet. 10, 89–107. https://doi.org/10.1534/g3.120.401092 (2020).
Hofer, D. et al. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 53, 1023–1034. https://doi.org/10.1111/1365-2664.12694 (2016).
Google Scholar
Pinheiro, J. et al. Nlme: Linear and nonlinear mixed effects models. R package version 3.1–137. https://CRAN.R-project.org/package=nlme (2018).
Bartón, K. MuMIn: Multi-model inference. R package version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019).
Source: Ecology - nature.com