in

Heat sensitivity of first host and cercariae may restrict parasite transmission in a warming sea

  • 1.

    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    ADS 
    PubMed 

    Google Scholar 

  • 2.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    ADS 

    Google Scholar 

  • 3.

    Hoegh-Guldberg, O. et al. Impacts of 1.5 °C global warming on natural and human systems. In: […]. in Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Preindustrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds. Masson-Delmotte, V. et al.) 175–311 (2018).

  • 4.

    Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Ann. Rev. Mar. Sci. 8, 357–378 (2016).

    PubMed 

    Google Scholar 

  • 5.

    Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).

    ADS 

    Google Scholar 

  • 6.

    Marcogliese, D. J. The impact of climate change on the parasites and infectious diseases of aquatic animals. OIE Rev. Sci. Tech. 27, 467–484 (2008).

    CAS 

    Google Scholar 

  • 7.

    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).

    Google Scholar 

  • 8.

    Mouritsen, K. N. & Poulin, R. Parasitism, climate oscillations and the structure of natural communities. Oikos 97, 462–468 (2002).

    Google Scholar 

  • 9.

    Poulin, R. & Mouritsen, K. N. Climate change, parasitism and the structure of intertidal ecosystems. J. Helminthol. 80, 183–191 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Mouritsen, K. N., Sørensen, M. M., Poulin, R. & Fredensborg, B. L. Coastal ecosystems on a tipping point: Global warming and parasitism combine to alter community structure and function. Glob. Change Biol. 24, 4340–4356 (2018).

    ADS 

    Google Scholar 

  • 11.

    James, C. C. et al. Marine host–pathogen dynamics: Influences of global climate change. Oceanography 31, 182–193 (2018).

    Google Scholar 

  • 12.

    Friesen, O. C., Poulin, R. & Lagrue, C. Temperature and multiple parasites combine to alter host community structure. Oikos 130(9), 1500–1511 (2021).

    Google Scholar 

  • 13.

    Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).

    PubMed 

    Google Scholar 

  • 14.

    Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Galaktionov, K. V. & Dobrovolskij, A. A. The Biology and Evolution of Trematodes: An Essay on the Biology, Morphology, Life Cycles, Transmissions, and Evolution of Digenetic Trematodes. The American Journal of Semiotics vol. 4 (Springer-Science+Business Media Dordrecht, 2003).

  • 16.

    Thieltges, D. W., Jensen, K. T. & Poulin, R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407–426 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Pietrock, M. & Marcogliese, D. J. Free-living endohelminth stages: At the mercy of environmental conditions. Trends Parasitol. 19, 293–299 (2003).

    PubMed 

    Google Scholar 

  • 18.

    Morley, N. J. Thermodynamics of cercarial survival and metabolism in a changing climate. Parasitology 138, 1442–1452 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Poulin, R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132, 143–151 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Thieltges, D. W. & Rick, J. Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis. Aquat. Organ. 73, 63–68 (2006).

    PubMed 

    Google Scholar 

  • 21.

    Selbach, C. & Poulin, R. Some like it hotter: Trematode transmission under changing temperature conditions. Oecologia 194, 745–755 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • 22.

    Morley, N. J. Inbred laboratory cultures and natural trematode transmission under climate change. Trends Parasitol. 27, 286–287 (2011).

    PubMed 

    Google Scholar 

  • 23.

    Paull, S. H. & Johnson, P. T. J. Experimental warming drives a seasonal shift in the timing of host–parasite dynamics with consequences for disease risk. Ecol. Lett. 17, 445–453 (2014).

    PubMed 

    Google Scholar 

  • 24.

    Paull, S. H., Lafonte, B. E. & Johnson, P. T. J. Temperature-driven shifts in a host–parasite interaction drive nonlinear changes in disease risk. Glob. Change Biol. 18, 3558–3567 (2012).

    ADS 

    Google Scholar 

  • 25.

    Studer, A., Poulin, R. & Tompkins, D. M. Local effects of a global problem: Modelling the risk of parasite-induced mortality in an intertidal trematode-amphipod system. Oecologia 172, 1213–1222 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Studer, A., Thieltges, D. W. & Poulin, R. Parasites and global warming: Net effects of temperature on an intertidal host–parasite system. Mar. Ecol. Prog. Ser. 415, 11–22 (2010).

    ADS 

    Google Scholar 

  • 27.

    Mouritsen, K. N., Tompkins, D. M. & Poulin, R. Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia 146, 476–483 (2005).

    ADS 
    PubMed 

    Google Scholar 

  • 28.

    Selbach, C., Barsøe, M., Vogensen, T. K., Samsing, A. B. & Mouritsen, K. N. Temperature–parasite interaction: Do trematode infections protect against heat stress?. Int. J. Parasitol. 50, 1189–1194 (2020).

    PubMed 

    Google Scholar 

  • 29.

    Werding, B. Morphologie, Entwicklung und Ökologie digener Trematoden-Larven der Strandschnecke Littorina littorea. Mar. Biol. 3, 306–333 (1969).

    Google Scholar 

  • 30.

    Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Fredensborg, B. L., Mouritsen, K. N. & Poulin, R. Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarcinatus. Mar. Ecol. Prog. Ser. 290, 109–117 (2005).

    ADS 

    Google Scholar 

  • 32.

    Morón Lugo, S. C. et al. Warming and temperature variability determine the performance of two invertebrate predators. Sci. Rep. 10, 1–14 (2020).

    ADS 

    Google Scholar 

  • 33.

    Wolf, F. et al. High resolution water temperature data between January 1997 and December 2018 at the GEOMAR pier surface. Bremen PANGAEA. https://doi.org/10.1594/PANGAEA.919186 (2020).

  • 34.

    Franz, M., Lieberum, C., Bock, G. & Karez, R. Environmental parameters of shallow water habitats in the SW Baltic Sea. Earth Syst. Sci. Data 11, 947–957 (2019).

    ADS 

    Google Scholar 

  • 35.

    Lajeunesse, M. J. Bias and correction for the log response ratio in ecological meta-analysis. Ecology 96, 2056–2063 (2015).

    PubMed 

    Google Scholar 

  • 36.

    Gräwe, U., Friedland, R. & Burchard, H. The future of the western Baltic Sea: Two possible scenarios. Ocean Dyn. 63, 901–921 (2013).

    ADS 

    Google Scholar 

  • 37.

    Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).

    ADS 

    Google Scholar 

  • 38.

    Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Clarke, A. P., Mill, P. J. & Grahame, J. The nature of heat coma in Littorina littorea (Mollusca: Gastropoda). Mar. Biol. 137, 447–451 (2000).

    Google Scholar 

  • 40.

    McDaniel, S. J. Littorina littorea: Lowered heat tolerance due to Cryptocotyle lingua. Exp. Parasitol. 25, 13–15 (1969).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Ataev, G. Temperature influence on the development and biology of rediae and cercariae of Philophthalmus rhionica (Trematoda). Parazitologiâ 25, 349–359 (1991).

    Google Scholar 

  • 42.

    Paull, S. H. & Johnson, P. T. J. High temperature enhances host pathology in a snail-trematode system: Possible consequences of climate change for the emergence of disease. Freshw. Biol. 56, 767–778 (2011).

    Google Scholar 

  • 43.

    Paull, S. H., Raffel, T. R., Lafonte, B. E. & Johnson, P. T. J. How temperature shifts affect parasite production: Testing the roles of thermal stress and acclimation. Funct. Ecol. 29, 941–950 (2015).

    Google Scholar 

  • 44.

    Kuris, A. M. Effect of exposure to Echinostoma liei miracidia on growth and survival of young Biomphalaria glabrata snails. Int. J. Parasitol. 10, 303–308 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Mouritsen, K. N. & Haun, S. C. B. Community regulation by herbivore parasitism and density: Trait-mediated indirect interactions in the intertidal. J. Exp. Mar. Biol. Ecol. 367, 236–246 (2008).

    Google Scholar 

  • 46.

    Bommarito, C. et al. Effects of first intermediate host density, host size and salinity on trematode infections in mussels of the south-western Baltic Sea. Parasitology 148, 486–494 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    McCarthy, A. M. The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 118, 383–388 (1999).

    PubMed 

    Google Scholar 

  • 48.

    Morley, N. J. & Lewis, J. W. Thermodynamics of trematode infectivity. Parasitology 142, 585–597 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Mouritsen, K. N. & Jensen, K. T. Parasite transmission between soft-bottom invertebrates: Temperature mediated infection rates and mortality in Corophium volutator. Mar. Ecol. Prog. Ser. 151, 123–134 (1997).

    ADS 

    Google Scholar 

  • 50.

    de Montaudouin, X., Wegeberg, A. M., Jensen, K. T. & Sauriau, P. G. Infection characteristics of Himasthla elongata cercariae in cockles as a function of water current. Dis. Aquat. Organ. 34, 63–70 (1998).

    Google Scholar 

  • 51.

    Vajedsamiei, J. et al. Simultaneous recording of filtration and respiration in marine organisms in response to short-term environmental variability. Limnol. Oceanogr. Methods https://doi.org/10.1002/lom3.10414 (2021).

    Article 

    Google Scholar 

  • 52.

    Koehler, A. V., Brown, B., Poulin, R., Thieltges, D. W. & Fredensborg, B. L. Disentangling phylogenetic constraints from selective forces in the evolution of trematode transmission stages. Evol. Ecol. 26, 1497–1512 (2012).

    Google Scholar 

  • 53.

    Stunkard, H. W. The morphology and life history of the digenetic trematode, Himasthla littorinae sp. n. (Echinostomatidae). J. Parasitol. 52, 367–372 (2014).

    Google Scholar 

  • 54.

    Selbach, C. & Poulin, R. Parasites in space and time: A novel method to assess and illustrate host-searching behaviour of trematode cercariae. Parasitology 145, 1469–1474 (2018).

    PubMed 

    Google Scholar 

  • 55.

    Gorbushin, A. M. & Levakin, I. A. Encystment in vitro of the cercariae Himasthla elongata (Trematoda: Echinostomatidae). J. Evol. Biochem. Physiol. 41, 428–436 (2005).

    Google Scholar 

  • 56.

    Gorbushin, A. M. & Shaposhnikova, T. G. In vitro culture of the avian echinostome Himasthla elongata: From redia to marita. Exp. Parasitol. 101, 234–239 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Levakin, I. A., Losev, E. A., Nikolaev, K. E. & Galaktionov, K. V. In vitro encystment of Himasthla elongata cercariae (Digenea, Echinostomatidae) in the haemolymph of blue mussels Mytilus edulis as a tool for assessing cercarial infectivity and molluscan susceptibility. J. Helminthol. 87, 180–188 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Choisy, M., Brown, S. P., Lafferty, K. D. & Thomas, F. Evolution of trophic transmission in parasites: Why add intermediate hosts?. Am. Nat. 162, 172–181 (2003).

    PubMed 

    Google Scholar 

  • 59.

    Pechenik, J. & Fried, B. Effect of temperature on survival and infectivity of Echinostoma trivolvis cercariae: A test of the energy limitation hypothesis. Parasitology 111, 373–378 (1995).

    Google Scholar 

  • 60.

    Fried, B. & Ponder, E. L. Effects of temperature on survival, infectivity and in vitro encystment of the cercariae of Echinostoma caproni. J. Helminthol. 77, 235–238 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Bommarito, C. et al. Freshening rather than warming drives trematode transmission from periwinkles to mussels. Mar. Biol. 167, 1–12 (2020).

    Google Scholar 

  • 62.

    Morley, N. J. & Lewis, J. W. Thermodynamics of cercarial development and emergence in trematodes. Parasitology 140, 121–1214 (2013).

    Google Scholar 

  • 63.

    Büttger, H. et al. Community dynamics of intertidal soft-bottom mussel beds over two decades. Helgol. Mar. Res. 62, 23–36 (2008).

    ADS 

    Google Scholar 

  • 64.

    Jaatinen, K., Westerbom, M., Norkko, A., Mustonen, O. & Koons, D. N. Detrimental impacts of climate change may be exacerbated by density-dependent population regulation in blue mussels. J. Anim. Ecol. 90, 562–573 (2021).

    PubMed 

    Google Scholar 

  • 65.

    Studer, A. & Poulin, R. Analysis of trait mean and variability versus temperature in trematode cercariae: Is there scope for adaptation to global warming?. Int. J. Parasitol. 44, 403–413 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Berkhout, B. W., Lloyd, M. M., Poulin, R. & Studer, A. Variation among genotypes in responses to increasing temperature in a marine parasite: Evolutionary potential in the face of global warming?. Int. J. Parasitol. 44, 1019–1027 (2014).

    PubMed 

    Google Scholar 

  • 67.

    Vanoverschelde, R. Studies on the life-cycle of Himasthla militaris (Trematoda: Echinostomatidae): Influence of salinity and temperature on egg development and miracidial emergence. Parasitology 82, 459–465 (1981).

    Google Scholar 

  • 68.

    Vanoverschelde, R. Studies on the life-cycle of Himasthla militaris (Trematoda: Echinostomatidae): Influence of temperature and salinity on the life-span of the miracidium and the infection of the first intermediate host, Hydrobia ventrosa. Parasitology 84, 131–135 (1982).

    Google Scholar 

  • 69.

    de Montaudouin, X. et al. Digenean trematode species in the cockle Cerastoderma edule: Identification key and distribution along the North-Eastern Atlantic Shoreline. J. Mar. Biol. Assoc. U.K. 89, 543–556 (2009).

    Google Scholar 

  • 70.

    Richard, A., de Montaudouin, X., Rubiello, A. & Maire, O. Cockle as second intermediate host of trematode parasites: Consequences for sediment bioturbation and nutrient fluxes across the benthic interface. J. Mar. Sci. Eng. 9, 749 (2021).

    Google Scholar 

  • 71.

    Magalhães, L., Freitas, R. & de Montaudouin, X. How costly are metacercarial infections in a bivalve host? Effects of two trematode species on biochemical performance of cockles. J. Invertebr. Pathol. 177, 107479 (2020).

    PubMed 

    Google Scholar 

  • 72.

    Magalhães, L., de Montaudouin, X., Figueira, E. & Freitas, R. Trematode infection modulates cockles biochemical response to climate change. Sci. Total Environ. 637–638, 30–40 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • 73.

    Magalhães, L. et al. Seasonal variation of transcriptomic and biochemical parameters of cockles (Cerastoderma edule) related to their infection by trematode parasites. J. Invertebr. Pathol. 148, 73–80 (2017).

    PubMed 

    Google Scholar 

  • 74.

    Bakhmet, I., Nikolaev, K. & Levakin, I. Effect of infection with Metacercariae of Himasthla elongata (Trematoda: Echinostomatidae) on cardiac activity and growth rate in blue mussels (Mytilus edulis) in situ. J. Sea Res. 123, 51–54 (2017).

    ADS 

    Google Scholar 

  • 75.

    Stier, T., Drent, J. & Thieltges, D. W. Trematode infections reduce clearance rates and condition in blue mussels Mytilus edulis. Mar. Ecol. Prog. Ser. 529, 137–144 (2015).

    ADS 

    Google Scholar 

  • 76.

    de Montaudouin, X., Bazairi, H. & Culloty, S. Effect of trematode parasites on cockle Cerastoderma edule growth and condition index: A transplant experiment. Mar. Ecol. Prog. Ser. 471, 111–121 (2012).

    ADS 

    Google Scholar 

  • 77.

    Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 1–14 (2019).

    ADS 

    Google Scholar 

  • 78.

    Österblom, H. et al. Human-induced trophic cascades and ecological regime shifts in the baltic sea. Ecosystems 10, 877–889 (2007).

    Google Scholar 

  • 79.

    Zander, C. D. & Reimer, L. W. Parasitism at the ecosystem level in the Baltic Sea. Parasitology 124, 119–135 (2002).

    Google Scholar 

  • 80.

    Johnson, P. T. J. et al. Aquatic eutrophication promotes pathogenic infection in amphibians. Proc. Natl. Acad. Sci. U. S. A. 104, 15781–15786 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Budria, A. & Candolin, U. How does human-induced environmental change influence host–parasite interactions?. Parasitology 141, 462–474 (2014).

    PubMed 

    Google Scholar 

  • 82.

    Aalto, S. L., Decaestecker, E. & Pulkkinen, K. A three-way perspective of stoichiometric changes on host–parasite interactions. Trends Parasitol. 31, 333–340 (2015).

    PubMed 

    Google Scholar 

  • 83.

    Vajedsamiei, J., Melzner, F., Raatz, M., Moron, S. & Pansch, C. Cyclic thermal fluctuations can be burden or relief for an ectotherm depending on fluctuations’ average and amplitude. Funct. Ecol. 35, 2483–2496 (2021).

    Google Scholar 

  • 84.

    Moisez, E., Spilmont, N. & Seuront, L. Microhabitats choice in intertidal gastropods is species-, temperature- and habitat-specific. J. Therm. Biol. 94, 102785 (2020).

    PubMed 

    Google Scholar 

  • 85.

    Bates, A. E., Leiterer, F., Wiedeback, M. L. & Poulin, R. Parasitized snails take the heat: A case of host manipulation?. Oecologia 167, 613–621 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Shinagawa, K., Urabe, M. & Nagoshi, M. Relationships between trematode infection and habitat depth in a freshwater snail, Semisulcospira libertina (Gould). Hydrobiologia 397, 171–178 (1999).

    Google Scholar 

  • 87.

    Friesen, O. C., Poulin, R. & Lagrue, C. Parasite-mediated microhabitat segregation between congeneric hosts. Biol. Lett. 14, 20170671 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Welsh, J. E., Van Der Meer, J., Brussaard, C. P. D. & Thieltges, D. W. Inventory of organisms interfering with transmission of a marine trematode. J. Mar. Biol. Assoc. U.K. 94, 697–702 (2014).

    Google Scholar 

  • 89.

    Soldánová, M., Selbach, C. & Sures, B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS One 11, 1–21 (2016).

    Google Scholar 

  • 90.

    Solovyeva, A. et al. Reduced infectivity in Himasthla elongata (Trematoda, Himasthlidae) cercariae with deviant photoreaction. J. Helminthol. 94, 1–5 (2020).

    Google Scholar 

  • 91.

    de Montaudouin, X., Blanchet, H., Desclaux-Marchand, C., Lavesque, N. & Bachelet, G. Cockle infection by Himasthla quissetensis—I. From cercariae emergence to metacercariae infection. J. Sea Res. 113, 99–107 (2016).

    Google Scholar 

  • 92.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health vol. 36 (Springer, 2009).

  • 93.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Google Scholar 

  • 94.

    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.0. (2018).
    https://CRAN.R-project.org/package=DHARMa 1–36 https://cran.r-project.org/web/packages/DHARMa/DHARMa.pdf. Accessed 26 Feb 2021.

  • 95.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC, 2017).

    MATH 

    Google Scholar 

  • 96.

    Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).

    MathSciNet 
    CAS 

    Google Scholar 

  • 97.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 

  • 98.

    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 1–11 (2017).

    Google Scholar 

  • 99.

    Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. Assessment of Regression Models Performance. CRAN. CRAN https://easystats.github.io/performance/ (2020) https://doi.org/10.1098/rsif.2017.0213. Accessed 1 Sept 2021.

  • 100.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression. Robust Regression in R (Sage, 2019).

    Google Scholar 

  • 101.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Google Scholar 


  • Source: Ecology - nature.com

    Complex marine microbial communities partition metabolism of scarce resources over the diel cycle

    Deep learning increases the availability of organism photographs taken by citizens in citizen science programs