in

Mapping native and non-native vegetation in the Brazilian Cerrado using freely available satellite products

  • 1.

    Pennington, R. T., Lehmann, C. E. R. & Rowland, L. M. Tropical savannas and dry forests. Curr. Biol. 28, R541–R545 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Change Biol. 26, 300–318 (2019).

    ADS 

    Google Scholar 

  • 3.

    Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants. 5, 944–951 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Moro, M. F., Nic Lughadha, E., de Araújo, F. S. & Martins, F. R. A phytogeographical metaanalysis of the semiarid caatinga domain in Brazil. Bot. Rev. 82, 91–148 (2016).

  • 6.

    Terra, M., et al. Water availability drives gradients of tree diversity, structure and functional traits in the Atlantic–Cerrado–Caatinga transition, Brazil. J. Plant Ecol. 11, 803–814 (2018).

  • 7.

    Leite, M. B., Xavier, R. O., Oliveira, P. T. S., Silva, F. K. G. & Silva Matos, D. M. Groundwater depth as a constraint on the woody cover in a Neotropical Savanna. Plant Soil. 426, 1–15 (2018).

  • 8.

    Silvertown, J., Araya, Y. & Gowing, D. Hydrological niches in terrestrial plant communities: a review. J. Ecol. 103, 93–108 (2014).

    Google Scholar 

  • 9.

    Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).

    ADS 

    Google Scholar 

  • 10.

    Congalton, R. G., Gu, J., Yadav, K., Thenkabail, P. & Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 6(12), 12070–12093 (2014).

    ADS 

    Google Scholar 

  • 11.

    Phiri, D. & Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens. 9(9), 967 (2017).

    Google Scholar 

  • 12.

    Joshi, N. et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 8(1), 70 (2016).

    ADS 

    Google Scholar 

  • 13.

    Xiao, J. et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 233, 111383 (2019).

    ADS 

    Google Scholar 

  • 14.

    Françoso, R. D. et al. Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status. Biodivers. Conserv. 29, 1477–1500 (2019).

    Google Scholar 

  • 15.

    Eiten, G. Delimitation of the cerrado concept. Plant Ecol. 36, 169–178 (1978).

    Google Scholar 

  • 16.

    Ribeiro, J.F. & Walter, B.M.T. As principais fitofisionomias do bioma Cerrado in Cerrado: ecologia e flora (ed. Sano, S.M., Almeida, S.P. & Ribeiro, J.F.) 151–212 (EMBRAPA, 2008).

  • 17.

    Oliveria, P.S. & Marquis, R.J. The Cerrados of Brazil: ecology and natural history of a neotropical savanna. (Columbia University Press, 2002).

  • 18.

    Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 12, 1044 (2020).

    ADS 

    Google Scholar 

  • 19.

    European Space Agency. Data. https://climate.esa.int/en/projects/land-cover/data/ (2021).

  • 20.

    Pellegrini, A. F. A. Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97, 313–324 (2016).

    PubMed 

    Google Scholar 

  • 21.

    Vourlitis, G. L. et al. Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (Cerrado) in Southern Mato Grosso. Soil Sci. Soc. Am. J. 77, 1370–1379 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 22.

    Abrahão, A. et al. Soil types select for plants with matching nutrient-acquisition and use traits in hyperdiverse and severely nutrient-impoverished campos rupestres and cerrado in Central Brazil. J. Ecol. 107, 1302–1316 (2018).

    Google Scholar 

  • 23.

    de Assis, A. C. C., Coelho, R. M., da Silva Pinheiro, E. & Durigan, G. Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation. Plant Ecol. 212, 1135–1147 (2011).

  • 24.

    Oliveira, P. T. S. et al. Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. Ecohydrology. 10, e1759 (2016).

  • 25.

    de Oliveira Xavier, R., Leite, M. B., Dexter, K. & da Silva Matos, D. M. Differential effects of soil waterlogging on herbaceous and woody plant communities in a Neotropical savanna. Oecologia. 190, 471–483 (2019).

  • 26.

    Zappi, D. C., Moro, M. F., Meagher, T. R. & Nic Lughadha, E. Plant biodiversity drivers in Brazilian campos rupestres: insights from phylogenetic structure. Front. Plant Sci. 8, (2017).

  • 27.

    Neri, A. V., Schaefer, C. E. G. R., Souza, A. L., Ferreira-Junior, W. G. & Meira-Neto, J. A. A. Pedology and plant physiognomies in the cerrado, Brazil. An. Acad. Bras. Ciênc. 85, 87–102 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Simon, M. F. & Pennington, T. Evidence for Adaptation to Fire Regimes in the Tropical Savannas of the Brazilian Cerrado. Int. J. Plant Sci. 173, 711–723 (2012).

    Google Scholar 

  • 29.

    de Castro, E. A. & Kauffman, J. B. Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263–283 (1998).

    Google Scholar 

  • 30.

    da Silva, D. M. & Batalha, M. A. Soil–vegetation relationships in cerrados under different fire frequencies. Plant Soil 311, 87–96 (2008).

    CAS 

    Google Scholar 

  • 31.

    Durigan, G. Zero-fire: Not possible nor desirable in the Cerrado of Brazil. Flora. 268, 151612 (2020).

  • 32.

    Lloyd, J. & Veenendaal, E. M. Are fire mediated feedbacks burning out of control? (2016)

  • 33.

    Bueno, M. L. et al. The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. J. Ecol. 106, 2109–2120 (2018).

    Google Scholar 

  • 34.

    Alencar, A. et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 12, 924 (2020).

    ADS 

    Google Scholar 

  • 35.

    INPE. Projeto TerraClass Cerrado Mapeamento do Uso e Cobertura Vegetal do Cerrado. http://www.inpe.br/cra/projetos_pesquisas/dados_terraclass.php (2019)

  • 36.

    Sano, E. E., Rosa, R., Brito, J. L. S. & Ferreira, L. G. Land cover mapping of the tropical savanna region in Brazil. Environ. Monit. Assess. 166, 113–124 (2009).

    PubMed 

    Google Scholar 

  • 37.

    Sano, E. E. et al. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J. Environ. Manag. 232, 818–828 (2019).

    Google Scholar 

  • 38.

    Monteiro, L. M. et al. Evaluating the impact of future actions in minimizing vegetation loss from land conversion in the Brazilian Cerrado under climate change. Biodivers. Conserv. 29, 1701–1722 (2018).

    Google Scholar 

  • 39.

    Silva, J. F., Farinas, M. R., Felfili, J. M. & Klink, C. A. Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J. Biogeogr. 33, 536–548 (2006).

    Google Scholar 

  • 40.

    Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 0099 (2017).

    Google Scholar 

  • 41.

    Soares-Filho, B. et al. Cracking Brazil’s Forest Code. Science 344, 363–364 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Gomes, L., Miranda, H. S. & Bustamante, M. M. C. How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome? For. Ecol. Manag. 417, 281–290 (2018).

  • 43.

    Hartley, A. J., MacBean, N., Georgievski, G. & Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 203, 71–89 (2017).

    ADS 

    Google Scholar 

  • 44.

    Cava, M. G. B., Pilon, N. A. L., Ribeiro, M. C. & Durigan, G. Abandoned pastures cannot spontaneously recover the attributes of old-growth savannas. J. Appl. Ecol. 55, 1164–1172 (2017).

    Google Scholar 

  • 45.

    Brancalion, P. H. S. et al. Governance innovations from a multi-stakeholder coalition to implement large-scale Forest Restoration in Brazil. World Dev. Perspect. 3, 15–17 (2016).

    Google Scholar 

  • 46.

    Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. B. 375, 20190120 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    MMA. Plano de Manejo Parque Nacional Chapada dos Veadeiros. Ministro de Estado do Meio Ambiente. Brasília. (2009).

  • 48.

    Hunke, P., Roller, R., Zeilhofer, P., Schröder, B. & Mueller, E. N. Soil changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Reg. 4, 31–43 (2015).

    Google Scholar 

  • 49.

    Sampaio, A.B. et. al. Guia de restauração do Cerrado: volume 1: semeadura direta. Embrapa Cerrados-Livro técnico (INFOTECA-E, 2015).

  • 50.

    Schmidt, I. B. et al. Tailoring restoration interventions to the grassland-savanna-forest complex in central Brazil. Restor. Ecol. 27, 942–948 (2019).

    Google Scholar 

  • 51.

    Schmidt, I. B. et al. Community-based native seed production for restoration in Brazil: the role of science and policy. Plant Biol. J. 21, 389–397 (2018).

    Google Scholar 

  • 52.

    Strassburg, B. B. N. et al. Author Correction: Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 4, 765–765 (2020).

    PubMed 

    Google Scholar 

  • 53.

    Assis, G. B., Pilon, N. A. L., Siqueira, M. F. & Durigan, G. Effectiveness and costs of invasive species control using different techniques to restore cerrado grasslands. Restor. Ecol. 29, (2020).

  • 54.

    Torello-Raventos, M. et al. On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecol. Divers. 6, 101–137 (2013).

    Google Scholar 

  • 55.

    da Silva, D. P., Amaral, A. G., Bijos, N. R. & Munhoz, C. B. R. Is the herb-shrub composition of veredas (Brazilian palm swamps) distinguishable?. Acta Bot. Bras. 32, 47–54 (2017).

    Google Scholar 

  • 56.

    Munhoz, C. B. R. & Felfili, J. M. Florística do estrato herbáceo-subarbustivo de um campo limpo úmido em Brasília, Brasil. Biota. Neotrop. 7, 205–215 (2007).

    Google Scholar 

  • 57.

    Franco, A. C. et al. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees 19, 326–335 (2004).

    Google Scholar 

  • 58.

    Oliveras, I. & Malhi, Y. Many shades of green: the dynamic tropical forest–savannah transition zones. Phil. Trans. R. Soc. B. 371, 20150308 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Cianciaruso, MV. & Batalha, MA. A year in a Cerrado wet grassland: a non-seasonal island in a seasonal savanna environment. Braz. J. Biol. 68, 495–501 (2008).

  • 60.

    MapBiomas. MapBiomas v5.0. https://mapbiomas.org (2021).

  • 61.

    Souza, C. M. Jr. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with landsat archive and earth engine. Remote Sens. 12, 2735 (2020).

    ADS 

    Google Scholar 

  • 62.

    Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    ADS 

    Google Scholar 

  • 63.

    Crouzeilles, R. et al. There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspect. Ecol. Conserv. 17, 80–83 (2019).

    Google Scholar 

  • 64.

    Smith, C. C. et al. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Change Biol. 26, 7006–7020 (2020).

    ADS 

    Google Scholar 

  • 65.

    Rosan, T. M. et al. Extensive 21st-Century Woody Encroachment in South America’s Savanna. Geophys. Res. Lett. 46, 6594–6603 (2019).

    ADS 

    Google Scholar 

  • 66.

    Schwieder, M. et al. Mapping Brazilian savanna vegetation gradients with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 52, 361–370 (2016).

    ADS 

    Google Scholar 

  • 67.

    Ribeiro, F. F. et al. Geographic Object-Based Image Analysis Framework for Mapping Vegetation Physiognomic Types at Fine Scales in Neotropical Savannas. Remote Sens. 12, 1721 (2020).

    ADS 

    Google Scholar 

  • 68.

    Jacon, A. D., Galvão, L. S., dos Santos, J. R. & Sano, E. E. Seasonal characterization and discrimination of savannah physiognomies in Brazil using hyperspectral metrics from Hyperion/EO-1. Int. J. Remote Sens. 38, 4494–4516 (2017).

    Google Scholar 

  • 69.

    Neves, A. K. et al. Hierarchical mapping of Brazilian Savanna (Cerrado) physiognomies based on deep learning. J. App. Remote Sens. 15, 044504–1–044504–23 (2021).

  • 70.

    de Souza Mendes, F., Baron, D., Gerold, G., Liesenberg, V. & Erasmi, S. Optical and SAR remote sensing synergism for mapping vegetation types in the endangered cerrado/amazon ecotone of nova mutum—mato grosso. Remote Sens. 11, 1161 (2019).

    ADS 

    Google Scholar 

  • 71.

    Sano, E. E., Ferreira, L. G., Asner, G. P. & Steinke, E. T. Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna. Int. J. Remote Sens. 28, 2739–2752 (2007).

    Google Scholar 

  • 72.

    Flores-Anderson, A.I., Herndon, K.E., Thapa, R.B. & Cherrington, E. The SAR handbook: comprehensive methodologies for forest monitoring and biomass estimation. (SERVIR, 2019).

  • 73.

    Bendini, H. N. et al. Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series. Int. J. Appl. Earth. Obs. Geoinf. 82, 101872 (2019).

  • 74.

    Bendini, H. N. et al. Combining environmental and Landsat analysis ready data for vegetation mapping: a case study in the Brazilian savanna biome. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B3–2020, 953–960 (2020).

  • 75.

    ECMWF. Climate reanalysis. https://climate.copernicus.eu/climate-reanalysis (2021).

  • 76.

    UNESCO. MINOR MODIFICATIONS PROPOSAL TO THE BOUNDARIES of Cerrado Protected Areas World Heritage: Chapada dos Veadeiros and Emas National Parks. (UNESCO Brasília, 2019)

  • 77.

    ICUN. Advisory mission to Cerrado Protected Areas World Heritage Property (Chapada Dos Veadeiros component) (Brazil). (International Union for Conservation of Nature, 2016)

  • 78.

    EMBRAPA. Sistema brasileiro de classificação dos solos. (EMBRAPA, 2006)

  • 79.

    IBGE. Mapa de Solos do Brasil do IBGE escala 1:250.000 https://www.ibge.gov.br/geociencias/downloads-geociencias.html (IBGE, 2020).

  • 80.

    Rodrigues, J. A. et al. How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. Int. J. Appl. Earth. Obs. Geoinf. 78, 318–331 (2019).

    ADS 

    Google Scholar 

  • 81.

    NASA, MCD64A1 v6. https://lpdaac.usgs.gov/products/mcd64a1v006/ (2021)

  • 82.

    GEE. Earth Engine Data Catalog. https://developers.google.com/earth-engine/datasets (2021)

  • 83.

    Vreugdenhil, M. et al. Sensitivity of sentinel-1 backscatter to vegetation dynamics: an Austrian case study. Remote Sens. 10, 1396 (2018).

    ADS 

    Google Scholar 

  • 84.

    Harfenmeister, K., Spengler, D. & Weltzien, C. Analyzing temporal and spatial characteristics of crop parameters using sentinel-1 backscatter data. Remote Sens. 11, 1569 (2019).

    ADS 

    Google Scholar 

  • 85.

    European Space Agency. Level-2A Algorithm Overview https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (2021)

  • 86.

    GEE. Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR (2021).

  • 87.

    GEE. USGS Landsat 8 Level 2, Collection 2, Tier 1. https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 (2021)

  • 88.

    Xue, J. & Su, B. Significant remote sensing vegetation indices: a review of developments and applications. J. Sens. 2017, 1353691 (2017).

    Google Scholar 

  • 89.

    Parente, L. & Ferreira, L. Assessing the spatial and occupation dynamics of the Brazilian pasturelands based on the automated classification of MODIS images from 2000 to 2016. Remote Sens. 10, 606 (2018).

    ADS 

    Google Scholar 

  • 90.

    Hill, M. J., Zhou, Q., Sun, Q., Schaaf, C. B. & Palace, M. Relationships between vegetation indices, fractional cover retrievals and the structure and composition of Brazilian Cerrado natural vegetation. Int. J. Remote Sens. 38, 874–905 (2017).

    Google Scholar 

  • 91.

    Nomura, K. & Mitchard, E. More than meets the eye: using sentinel-2 to map small plantations in complex forest landscapes. Remote Sens. 10, 1693 (2018).

    ADS 

    Google Scholar 

  • 92.

    Hagen-Zanker, A. A computational framework for generalized moving windows and its application to landscape pattern analysis. Int. J. Appl. Earth. Obs. Geoinf. 44, 205–216 (2016).

    ADS 

    Google Scholar 

  • 93.

    Wantzen, K. M. et al. Soil carbon stocks in stream-valley-ecosystems in the Brazilian Cerrado agroscape. Agric. Ecosyst. Environ. 151, 70–79 (2012).

    CAS 

    Google Scholar 

  • 94.

    ESA. Copernicus DEM: Global and European Digital Elevation Model (COP-DEM). https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198 (2021)

  • 95.

    Breiman, L. Mach. Learn. 45, 5–32 (2001).

  • 96.

    Chen, D. & Wei, H. The effect of spatial autocorrelation and class proportion on the accuracy measures from different sampling designs. ISPRS J. Photogramm. Remote Sens. 64, 140–150 (2009).

    ADS 

    Google Scholar 

  • 97.

    Olofsson, P., Foody, G. M., Stehman, S. V. & Woodcock, C. E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 129, 122–131 (2013).

    ADS 

    Google Scholar 

  • 98.

    Foody, G. M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201 (2002).

    ADS 

    Google Scholar 

  • 99.

    Jank, L., Barrios, S. C., do Valle, C. B., Simeão, R. M. & Alves, G. F. The value of improved pastures to Brazilian beef production. Crop Pasture Sci. 65, 1132 (2014).

  • 100.

    Oliveira, J. et al. Choosing pasture maps: An assessment of pasture land classification definitions and a case study of Brazil. Int. J. Appl. Earth. Obs. Geoinf. 93, 102205 (2020).

  • 101.

    Pereira, O., Ferreira, L., Pinto, F. & Baumgarten, L. Assessing pasture degradation in the Brazilian cerrado based on the analysis of MODIS NDVI time-series. Remote Sens. 10, 1761 (2018).

    ADS 

    Google Scholar 

  • 102.

    Meirelles, M.L., Ferreira, E.A.B. and Franco, A.C. Dinâmica sazonal do carbono em campo úmido do cerrado. Embrapa Cerrados-Documentos (INFOTECA-E, 2006).

  • 103.

    França, A. M. S., Paiva, R. J. O., Sano, E. E. & Carvalho, A. M. Estimates for carbon stocks in soil under humid grassland areas in the federal district of Brazil. OJE 04, 777–787 (2014).

    Google Scholar 

  • 104.

    Silveira, F. A. O. et al. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil. 403, 129–152 (2015).

    Google Scholar 

  • 105.

    Pereira, E. G., Siqueira-Silva, A. I., de Souza, A. E., Melo, N. M. J. & Souza, J. P. Distinct ecophysiological strategies of widespread and endemic species from the megadiverse campo rupestre. Flora 238, 79–86 (2018).

    Google Scholar 

  • 106.

    Moreira, S. N., Pott, V. J., Pott, A., da Silva, R. H. & Júnior, G. A. D. Flora and vegetation structure of Vereda in southwestern Cerrado. Oecol. Aust. 23, 776–798 (2019).

    Google Scholar 

  • 107.

    Pinto, J. R. R., Lenza, E. & Pinto, A. de S. Composição florística e estrutura da vegetação arbustivo-arbórea em um cerrado rupestre, Cocalzinho de Goiás, Goiás. Rev. Bras. Bot. 32, (2009).

  • 108.

    Gomes, L., Lenza, E., Maracahipes, L., Marimon, B. S. & Oliveira, E. A. de. Comparações florísticas e estruturais entre duas comunidades lenhosas de cerrado típico e cerrado rupestre, Mato Grosso, Brasil. Acta Bot. Bras. 25, 865–875 (2011).

  • 109.

    Gomes, D.L. Classificação fitofisionômica do cerrado no Parque Nacional da Chapada dos Veadeiros, GO, com a aplicação de uma análise combinatória com filtros adaptativos em imagens TM Landsat. (Dissertação de Mestrado, Brasília, 2008).

  • 110.

    Neyret, M. et al. Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly. Ecol. Evol. 6, 5674–5689 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 111.

    Abreu, R. C. R. et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).

  • 112.

    Morais, V. A. et al. Carbon and biomass stocks in a fragment of cerradão in Minas Gerais state, Brazil. Cerne 19, 237–245 (2013).

    Google Scholar 

  • 113.

    Bispo, P. da C. et al. Woody aboveground biomass mapping of the Brazilian savanna with a multi-sensor and machine learning approach. Remote Sens. 12, 2685 (2020).

  • 114.

    Taberelli, M. & Gascon, C. Lessons from fragmentation research: improving management and policy guidelines for biodiversity conservation. Conserv. Biol. 19, 734–739 (2005).

    Google Scholar 

  • 115.

    Holder, D. N. H., Dockary, M. & Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 4, 273–288 (1983).

    Google Scholar 

  • 116.

    Li, J. & Roy, D. A global analysis of sentinel-2A, sentinel-2B and landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 9, 902 (2017).

    ADS 

    Google Scholar 

  • 117.

    Hunter, F. D. L., Mitchard, E. T. A., Tyrrell, P. & Russell, S. Inter-seasonal time series imagery enhances classification accuracy of grazing resource and land degradation maps in a savanna ecosystem. Remote Sens. 12, 198 (2020).

    ADS 

    Google Scholar 

  • 118.

    Ramos, D. M., Diniz, P., Ooi, M. K. J., Borghetti, F. & Valls, J. F. M. Avoiding the dry season: dispersal time and syndrome mediate seed dormancy in grasses in Neotropical savanna and wet grasslands. J. Veg. Sci. 28, 798–807 (2017).

    Google Scholar 

  • 119.

    de Camargo, M. G. G., de Carvalho, G. H., Alberton, B. de C., Reys, P. & Morellato, L. P. C. Leafing patterns and leaf exchange strategies of a cerrado woody community. Biotropica. 50, 442–454 (2018).

  • 120.

    Rüetschi, M., Schaepman, M. & Small, D. Using multitemporal sentinel-1 C-band backscatter to monitor phenology and classify deciduous and coniferous forests in Northern Switzerland. Remote Sens. 10, 55 (2017).

    ADS 

    Google Scholar 

  • 121.

    Sano, E. E., Ferreira, L. G. & Huete, A. R. Synthetic aperture radar (L band) and optical vegetation indices for discriminating the Brazilian savanna physiognomies: a comparative analysis. Earth Interact. 9, 1–15 (2005).

    Google Scholar 

  • 122.

    Joshi, N. et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 8, 70 (2016).

    ADS 

    Google Scholar 

  • 123.

    Nicolau, A. P., Flores-Anderson, A., Griffin, R., Herndon, K. & Meyer, F. J. Assessing SAR C-band data to effectively distinguish modified land uses in a heavily disturbed Amazon forest. Int. J. Appl. Earth. Obs. Geoinf. 94, 102214 (2021).

  • 124.

    Notarnicola, C. & Posa, F. Inferring vegetation water content from C- and L-band SAR images. IEEE Trans. Geosci. Remote Sens. 45, 3165–3171 (2007).

    ADS 

    Google Scholar 

  • 125.

    El Hajj, M., Baghdadi, N., Bazzi, H. & Zribi, M. Penetration analysis of SAR signals in the C and L bands for wheat, maize, and grasslands. Remote Sens. 11, 31 (2018).

    ADS 

    Google Scholar 

  • 126.

    JAXA. Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest/Non-Forest map. https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm (JAXA, 2021).

  • 127.

    Zimbres, B. et al. Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. For. Ecol. Manag. 499, 119615 (2021).

  • 128.

    Ryan, C. M. et al. Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery. Glob. Change Biol. 18, 243–257 (2011).

    ADS 

    Google Scholar 

  • 129.

    Yu, Y. & Saatchi, S. Sensitivity of L-Band SAR backscatter to aboveground biomass of global forests. Remote Sens. 8, 522 (2016).

    ADS 

    Google Scholar 

  • 130.

    Pilon, N. A. L. et al. The diversity of post-fire regeneration strategies in the cerrado ground layer. J. Ecol. 109, 154–166 (2020).

    Google Scholar 

  • 131.

    Schmidt, I. B. & Eloy, L. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora. 268, 151613 (2020).

  • 132.

    Boschetti, L. et al. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 235, 111490 (2019).

  • 133.

    Humber, M. L., Boschetti, L., Giglio, L. & Justice, C. O. Spatial and temporal intercomparison of four global burned area products. Int. J. Digit. Earth. 12, 460–484 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 134.

    Arruda, V. L. S., Piontekowski, V. J., Alencar, A., Pereira, R. S. & Matricardi, E. A. T. An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sens. Appl. Soc. Environ. 22, 100472 (2021).

  • 135.

    Santos, F. L. M. et al. Assessing VIIRS capabilities to improve burned area mapping over the Brazilian Cerrado. Int. J. Remote Sens. 41, 8300–8327 (2020).

    Google Scholar 

  • 136.

    Marques, E. Q. et al. Redefining the Cerrado-Amazonia transition: implications for conservation. Biodivers. Conserv. 29, 1501–1517 (2019).

    Google Scholar 

  • 137.

    Marimon, B. S. et al. Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecol. Divers. 7, 281–292 (2013).

    Google Scholar 

  • 138.

    Mellor, A., Boukir, S., Haywood, A. & Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 105, 155–168 (2015).

    ADS 

    Google Scholar 

  • 139.

    DRYFLOR. Plant diversity patterns in neotropical dry forests and their conservation implications. Science. 353, 1383–1387 (2016).


  • Source: Ecology - nature.com

    Hunting shapes wildlife disease transmission

    Livestock grazing impact differently on the functional diversity of dung beetles depending on the regional context in subtropical forests