in

Livestock grazing impact differently on the functional diversity of dung beetles depending on the regional context in subtropical forests

  • 1.

    Herrero, M. et al. Livestock and the environment: What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202 (2015).

    Google Scholar 

  • 2.

    Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Firbank, L. G., Petit, S., Smart, S., Blain, A. & Fuller, R. J. Assessing the impacts of agricultural intensification on biodiversity: A British perspective. Philos. Trans. R. Soc. B: Biol. Sci. 363, 777–787 (2007).

    Google Scholar 

  • 4.

    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

    PubMed 

    Google Scholar 

  • 5.

    Steinfeld, H., de Haan, C. & Blackburn, H. Livestock—Environment Interactions 88 (WRENmedia, 1997).

    Google Scholar 

  • 6.

    Eldridge, D. J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 26, 1273–1283 (2016).

    PubMed 

    Google Scholar 

  • 7.

    Schieltz, J. M. & Rubenstein, D. I. Evidence based review: Positive versus negative effects of livestock grazing on wildlife. What do we really know?. Environ. Res. Lett. 11, 113003 (2016).

    ADS 

    Google Scholar 

  • 8.

    Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).

    Google Scholar 

  • 9.

    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Google Scholar 

  • 10.

    Keddy, P. A. Assembly and response rules: Two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).

    Google Scholar 

  • 11.

    Pärtel, M., Zobel, M., Zobel, K., van der Maarel, E. & Partel, M. The species pool and its relation to species richness: Evidence from Estonian plant communities. Oikos 75, 111–117 (1996).

    Google Scholar 

  • 12.

    Temperton, V., Hobbs, R. J., Nuttle, T. & Halle, S. Assembly Rules and Restoration Ecology. Bridging the Gap Between Theory and Practice (Island Press, 2004).

    Google Scholar 

  • 13.

    Leibold, M. A. Similarity and local co-existence of species in regional biotas. Evol. Ecol. 12, 95–110 (1998).

    Google Scholar 

  • 14.

    Hortal, J. et al. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles: Ice age determines European scarab diversity. Ecol. Lett. 14, 741–748 (2011).

    PubMed 

    Google Scholar 

  • 15.

    de Bello, F., Lepš, J. & Sebastià, M.-T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29, 801–810 (2006).

    Google Scholar 

  • 16.

    Reymond, A., Purcell, J., Cherix, D., Guisan, A. & Pellissier, L. Functional diversity decreases with temperature in high elevation ant fauna: Functional diversity in high elevation ant. Ecol. Entomol. 38, 364–373 (2013).

    Google Scholar 

  • 17.

    Safi, K. et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B 366, 2536–2544 (2011).

    Google Scholar 

  • 18.

    Mason-Romo, E. D., Farías, A. A. & Ceballos, G. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico. PLoS ONE 12, e0189104 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Wen, Z. et al. Functional diversity overrides community-weighted mean traits in linking land-use intensity to hydrological ecosystem services. Sci. Total Environ. 682, 583–590 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 20

    Corbelli, J. M. et al. Integrating taxonomic, functional and phylogenetic beta diversities: Interactive effects with the biome and land use across taxa. PLoS ONE 10, e0126854 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).

    PubMed 

    Google Scholar 

  • 22.

    Spector, S. Scarabaeine dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae): An invertebrate focal taxon for biodiversity research and conservation. Coleopt. Bull. 60, 71–83 (2006).

    Google Scholar 

  • 23.

    Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests: Cost-effectiveness of biodiversity surveys. Ecol. Lett. 11, 139–150 (2008).

    PubMed 

    Google Scholar 

  • 24.

    Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 111, 112–118 (2005).

    Google Scholar 

  • 25.

    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed 

    Google Scholar 

  • 26.

    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed 

    Google Scholar 

  • 27.

    Audino, L. D., Louzada, J. & Comita, L. Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity?. Biol. Cons. 169, 248–257 (2014).

    Google Scholar 

  • 28.

    Barragán, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE 6, e17976 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Correa, C. M. A., Braga, R. F., Puker, A. & Korasaki, V. Patterns of taxonomic and functional diversity of dung beetles in a human-modified variegated landscape in Brazilian Cerrado. J. Insect Conserv. 23, 89–99 (2019).

    Google Scholar 

  • 30.

    Gómez-Cifuentes, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J. Insect Conserv. 21, 147–156 (2017).

    Google Scholar 

  • 31.

    Guerra Alonso, C. B., Zurita, G. A. & Bellocq, M. I. Dung beetles response to livestock management in three different regional contexts. Sci. Rep. 10, 3702 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32

    de Siqueira Neves, F. et al. Successional and seasonal changes in a community of dung beetles (Coleoptera: Scarabaeinae) in a Brazilian tropical dry forest. Nat. Conserv. 08, 160–164 (2010).

    Google Scholar 

  • 33

    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    Google Scholar 

  • 34.

    Brown, A. La situación ambiental Argentina 2005 (Fundación Vida Silvestre Argentina, 2006).

    Google Scholar 

  • 35.

    Larsen, T. H., Lopera, A. & Forsyth, A. Extreme trophic and habitat specialization by Peruvian dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopt. Bull. 60, 315–324 (2006).

    Google Scholar 

  • 36

    Vaz-de-Mello, F. Z. A Multilingual Key to the Genera and Subgenera of the Subfamily Scarabaeinae of the New World (Coleoptera: Scarabaeidae) (Magnolia Press, 2011).

    Google Scholar 

  • 37.

    Braun-Blanquet, J. Fitosociología [Phytosociology]. Bases para el estudio de las comunidades vegetales [Basis for the study of plant communities] 820 (Editorial H. Blume, 1979).

    Google Scholar 

  • 38.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • 39

    Scholtz, C. H., Davis, A. L. V. & Kryger, U. Evolutionary Biology and Conservation of Dung Beetles (Pensoft, 2009).

    Google Scholar 

  • 40.

    Simmons, L. W. & Ridsdill-Smith, J. Reproductive competition and its impact on the evolution and ecology of dung beetles. In Ecology and Evolution of Dung Beetles (eds Simmons, L. W. & Ridsdill-Smith, T. J.) 1–20 (Wiley, 2011). https://doi.org/10.1002/9781444342000.ch1.

    Chapter 

    Google Scholar 

  • 41.

    Vaz-de-Mello, F. Scarabaeidae in Catálogo Taxonômico da Fauna do Brasil. Catálogo Taxonômico da Fauna do Brasil. http://fauna.jbrj.gov.br/fauna/faunadobrasil/128171 (2018).

  • 42.

    Zunino, M. Food relocation behaviour: A multivalent strategy of Coleoptera. In Advances in Coleopterology (eds Zunino, M. et al.) 297–314 (AEC, 1991).

    Google Scholar 

  • 43.

    LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Ann. Rev. Ecol. Syst. 20, 97–117 (1989).

    Google Scholar 

  • 44

    Soto, C. S., Giombini, M. I., Giménez Gómez, V. C. & Zurita, G. A. Phenotypic differentiation in a resilient dung beetle species induced by forest conversion into cattle pastures. Evol. Ecol. 33, 385–402 (2019).

    Google Scholar 

  • 45.

    Laliberté, E., Legendre, P. & Shipley, B. Package ‘FD’. Measuring Functional Diversity (FD) from Multiple Traits, and Other Tools for Functional Ecology (2014).

  • 46.

    Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857 (1971).

    Google Scholar 

  • 47.

    Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402 (2009).

    Google Scholar 

  • 48.

    Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).

    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • 49.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems: Data exploration. Methods Ecol. Evol. 1, 3–14 (2010).

    Google Scholar 

  • 50.

    Lavorel, S. et al. Assessing functional diversity in the field—Methodology matters!. Funct. Ecol. 22, 134–147 (2008).

    Google Scholar 

  • 51.

    Oksanen, J. et al. vegan: Community Ecology Package (2017).

  • 52.

    Clarke, K. R. & Green, R. H. Statistical design and analysis for a ‘biological effects’ study. Mar. Ecol. Prog. Ser. 46, 213–226 (1988).

    ADS 

    Google Scholar 

  • 53.

    da Silva, P. G. & Cassenote, S. Environmental drivers of species composition and functional diversity of dung beetles along the Atlantic Forest-Pampa transition zone. Austral. Ecol. 44, 786–799 (2019).

    Google Scholar 

  • 54.

    Giraldo, C., Escobar, F., Chará, J. D. & Calle, Z. The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes: Ecological processes regulated by dung beetles. Insect Conserv. Divers. 4, 115–122 (2011).

    Google Scholar 

  • 55.

    Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94, 180–189 (2013).

    PubMed 

    Google Scholar 

  • 56

    Gómez-Cifuentes, A., Giménez Gómez, V. C., Moreno, C. E. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: The role of microclimate and soil conditions. Basic Appl. Ecol. 34, 64–74 (2019).

    Google Scholar 

  • 57.

    Cerullo, G. R., Edwards, F. A., Mills, S. C. & Edwards, D. P. Tropical forest subjected to intensive post-logging silviculture maintains functionally diverse dung beetle communities. For. Ecol. Manage. 444, 318–326 (2019).

    Google Scholar 

  • 58.

    Filloy, J., Zurita, G. A., Corbelli, J. M. & Bellocq, M. I. On the similarity among bird communities: Testing the influence of distance and land use. Acta Oecol. 36, 333–338 (2010).

    ADS 

    Google Scholar 

  • 59.

    Chown, S. L., Sørensen, J. G. & Terblanche, J. S. Water loss in insects: An environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Duncan, F. D. & Byrne, M. J. Discontinuous gas exchange in dung beetles: Patterns and ecological implications. Oecologia 122, 452–458 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Lobo, J. M., Lumaret, J.-P. & Jay-Robert, P. Sampling dung beetles in the French Mediterranean area: Effects of abiotic factors and farm practices. Pedobiología 42(3), 252–266 (1998).

    Google Scholar 

  • 62.

    Navarrete, D. & Halffter, G. Dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in continuous forest, forest fragments and cattle pastures in a landscape of Chiapas, Mexico: The effects of anthropogenic changes. Biodivers. Conserv. 17, 2869–2898 (2008).

    Google Scholar 

  • 63.

    Verdú, J. R., Arellano, L. & Numa, C. Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): Effect of body size and ecophysiological constraints in flight. J. Insect Physiol. 52, 854–860 (2006).

    PubMed 

    Google Scholar 

  • 64.

    Davis, A. J., Huijbregts, H. & Krikken, J. The role of local and regional processes in shaping dung beetle communities in tropical forest plantations in Borneo. Glob. Ecol. 9, 281–292 (2000).

    Google Scholar 

  • 65.

    Tuff, K. T., Tuff, T. & Davies, K. F. A framework for integrating thermal biology into fragmentation research. Ecol. Lett. 19, 361–374 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Davis, A. L. V. Habitat fragmentation in southern Africa and distributional response patterns in five specialist or generalist dung beetle families (Coleoptera). Afr. J. Ecol. 32, 192–207 (1994).

    Google Scholar 

  • 67.

    Halffter, G. & Arellano, L. Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica 34, 144–154 (2002).

    Google Scholar 

  • 68.

    Hill, C. Habitat specificity and food preferences of an assemblage of tropical Australian dung beetles. J. Trop. Ecol. 12, 449–460 (1996).

    Google Scholar 

  • 69.

    Supp, S. R. & Ernest, S. K. M. Species-level and community-level responses to disturbance: A cross-community analysis. Ecology 95, 1717–1723 (2014).

    PubMed 

    Google Scholar 

  • 70.

    Davis, A. L. V., Scholtz, C. H. & Deschodt, C. Multi-scale determinants of dung beetle assemblage structure across abiotic gradients of the Kalahari-Nama Karoo ecotone, South Africa. J. Biogeogr. 35, 1465–1480 (2008).

    Google Scholar 

  • 71.

    Nervo, B., Tocco, C., Caprio, E., Palestrini, C. & Rolando, A. The effects of body mass on dung removal efficiency in dung beetles. PLoS ONE 9, e107699 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Bui, V. B., Ziegler, T. & Bonkowski, M. Morphological traits reflect dung beetle response to land use changes in tropical karst ecosystems of Vietnam. Ecol. Ind. 108, 105697 (2020).

    Google Scholar 

  • 73.

    Giménez Gómez, V. C., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 13364 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Verdú, J. R., Alba-Tercedor, J. & Jiménez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and micro-computer tomography. PLoS ONE 7, e33914 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Gómez-Cifuentes, A., Vespa, N., Semmartín, M. & Zurita, G. Canopy cover is a key factor to preserve the ecological functions of dung beetles in the southern Atlantic Forest. Appl. Soil. Ecol. 154, 103652 (2020).

    Google Scholar 

  • 76.

    Fernández, P. D. et al. Understanding the distribution of cattle production systems in the South American Chaco. J. Land Use Sci. 15, 52–68 (2020).

    Google Scholar 

  • 77

    Grau, H. R. & Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. 13, 16 (2008).

    Google Scholar 

  • 78.

    Mastrangelo, M. E. & Gavin, M. C. Trade-offs between cattle production and bird conservation in an agricultural frontier of the Gran Chaco of Argentina. Conserv. Biol. 26, 1040–1051 (2012).

    PubMed 

    Google Scholar 

  • 79.

    Macchi, L. et al. Thresholds in forest bird communities along woody vegetation gradients in the South American Dry Chaco. J. Appl. Ecol. 56, 629–639 (2019).

    Google Scholar 

  • 80.

    Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Google Scholar 

  • 81.

    Slade, E. M., Mann, D. J., Villanueva, J. F. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1094–1104 (2007).

    PubMed 

    Google Scholar 

  • 82.

    Ortega-Martínez, I. J., Moreno, C. E. & Escobar, F. A dirty job: manure removal by dung beetles in both a cattle ranch and laboratory setting. Entomol. Exp. Appl. 161, 70–78 (2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Richard Leakey (1944–2022)

    Preparing global online learners for the clean energy transition