https://covidtracking.com/
Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199 (2020).
Google Scholar
Anderson, R. M., Heesterbeek, H., Klinkenberg, D. & Hollingsworth, T. D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancent 395, 931 (2020).
Google Scholar
WHO. Coronavirus disease (COVID 2019) situation report-30.
Linton, N. M. et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: A statistical analysis of publicly available case data. J. Clin. Med. 9, 538 (2020).
Google Scholar
https://www.washingtonpost.com/graphics/2020/national/states-reopening-coronavirus-map/
Kaufman, G. B. et al. Comparing associations of state reopening strategies with COVID-19 burden. J. Gen. Intern. Med. 35, 3627 (2020).
Google Scholar
Woolf, S. H. et al. Excess deaths from COVID-19 and other causes, March-July 2020. JAMA 324, 1562 (2020).
Google Scholar
Faust, J. S. et al. All-cause excess mortality and COVID-19-related mortality among US adults aged 25–44 years, March–July 2020. JAMA 325, 785 (2021).
Google Scholar
Huppert, A. & Katriel, G. Mathematical modelling and prediction in infectious disease epidemiology. Clin. Microbiol. Infect. 19, 999 (2003).
Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. 115, 700 (1927).
Google Scholar
Crokidakis, C. Modeling the early evolution of the COVID-19 in Brazil: Results from a susceptible-infectious-quarantined-recovered (SIQR) model. Int. J. Mod. Phys. C 31, 2050135 (2020).
Google Scholar
Bin, M. et al. Post-lockdown abatement of COVID-19 by fast periodic switching. PLoS Comput. Biol. 17, e1008604 (2021).
Google Scholar
Pedersen, M. G., & Meneghini, M. Quantifying undetected COVID-19 cases and effects of containment measures in Italy: Predicting phase 2 dynamics. https://doi.org/10.13140/RG.2.2.11753.85600 (2020).
Calafiore, G. C., Novara, C., & Possieri, C. A Modified SIR Model for the COVID-19 Contagion in Italy. arXiv:2003.14391 (2020).
Bastos, S. B., & Cajueiro, D. O. Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil. arXiv:2003.14288 (2020).
Gaeta, G. Chaos, social distancing versus early detection and contacts tracing in epidemic management. Solitons Fractals 140, 110074 (2020).
Google Scholar
Gaeta, G. Asymptomatic infectives and R0 for COVID. arXiv:2003.14098 (2020).
te Vrugt, M., Bickmann, J., & Wittkowski, R. Effects of social distancing and isolation on epidemic spreading: a dynamical density functional theory model. arXiv:2003.13967 (2020).
Schulz, R. A., Coimbra-Araújo, C. H., & Costiche, S. W. S. COVID-19: A model for studying the evolution of contamination in Brazil. arXiv:2003.13932 (2020).
Zhang, Y., Yu, X., Sun, H., Tick, Geoffrey R., Wei, W., & Jin, B. COVID-19 infection and recovery in various countries: Modeling the dynamics and evaluating the non-pharmaceutical mitigation scenarios. arXiv:2003.13901 (2020).
Dell’Anna, L. Solvable delay model for epidemic spreading: the case of Covid-19 in Italy. Sci. Rep. 10, 15763 (2020).
Google Scholar
Sonnino, G. & Nardone, P. Annals of clinical and medical case reports dynamics of the COVID-19 comparison between the theoretical predictions and the real data, and predictions about returning to normal life. Ann. Clin. Med. Case Rep. 4, 1 (2020).
Notari, A. Temperature dependence of COVID-19 transmission. arXiv:2003.12417 (2020).
Amaro, J. E. The D model for deaths by COVID-19. arXiv:2003:13747 (2020).
Simha, A., Prasad, R. V., & Narayana, S. A simple stochastic SIR model for COVID 19 infection dynamics for Karnataka: Learning from Europe. arXiv:2003.11920 (2020).
Acioli, P. H. Diffusion as a first model of spread of viral infection. arXiv:2003.11449 (2020).
Zullo, F. Some numerical observations about the COVID-19 epidemic in Italy. arXiv:2003.11363 (2020).
Sameni, R. Mathematical modeling of epidemic diseases; a case study of the COVID-19 coronavirus. arXiv:2003.11371 (2020).
Radulescu, A., & Cavanagh, K. Management strategies in a SEIR model of COVID 19 community spread. arXiv:2003.11150 (2020).
Roques, L., Klein, E., Papaix, J. & Soubeyrand, S. Using early data to estimate the actual infection fatality ratio from COVID-19 in France. MDPI Biol. 9, 97 (2020).
Google Scholar
Teles, P. Predicting the evolution Of SARS-Covid-2 in Portugal using an adapted SIR Model previously used in South Korea for the MERS outbreak. arXiv:2003.10047 (2020).
Piccolomini, E. L., & Zama, F. Preliminary analysis of COVID-19 spread in Italy with an adaptive SEIRD model. arXiv:2003.09909 (2020).
Brugnano, L., & Iavernaro, F. A multi-region variant of the SIR model and its extensions. arXiv:2003.09875 (2020).
Giordano, G. et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. the COVID19 IRCCS San Matteo Pavia Task Force. Nat. Med. 16, 855 (2020).
Zlatić, V., Barjašć, I., Kadović, A., Štefančić, H. & Gabrielli, A. Bi-stability of SUDR+ K model of epidemics and test kits applied to COVID-19. Nonlinear Dyn. 101, 1635 (2020).
Baker, R. Reactive Social distancing in a SIR model of epidemics such as COVID-19. arXiv:2003.08285 (2020).
Biswas, K., Khaleque, A., & Sen, P. Covid-19 spread: Reproduction of data and prediction using a SIR model on Euclidean network. arXiv:2003.07063 (2020).
Zhang, J., Wang, L., & Wang, J. SIR model-based prediction of infected population of coronavirus in Hubei Province. arXiv:2003.06419 (2020).
Chen, Y.-C., Lu, P.-E., Chang, C.-S., & Liu, T.-H. A Time-dependent SIR model for COVID-19 with Undetectable Infected Persons. arXiv:2003.00122 (2020).
Lloyd, A. L. Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics. Theor. Popul. Biol. 60, 59 (2001).
Google Scholar
Fokas, A. S., Dikaios, N. & Kastis, G. A. Mathematical models and deep learning for predicting the number of individuals reported to be infected with SARS-CoV-2. J. R. Soc. Interface 17, 20200494 (2020).
Google Scholar
Vadyala, S. R., Betgeri, S. N., Sherer, E. A., & Amritphale, A. Prediction of the number of COVID-19 confirmed cases based on K-means-LSTM. arXiv:2006.14752 (2020).
Fokas, A. S., Cuevas-Maraver, J. & Kevrekidis, P. G. A quantitative framework for exploring exit strategies from the COVID-19 lockdown. Chaos Solitons Fractals 140, 11024 (2020).
Google Scholar
Coopera, I., Mondal, A. & Antonopoulos, C. G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals 139, 110057 (2020).
Google Scholar
Bertozzi, A. L., Franco, E., Mohler, G., Short, M. B. & Sledge, D. The challenges of modeling and forecasting the spread of COVID-19. PNAS 117, 16732 (2020).
Google Scholar
Prem, K. et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. The Lancet Public Health 5, e261 (2020).
Google Scholar
He, S., Peng, Y. & Sun, K. SEIR modeling of the COVID-19 and its dynamics. Nonlinear Dyn. 101, 1667 (2020).
Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D. & Mbogo, R. SEIR model for COVID-19 dynamics incorporating the environment and social distancing. BMC Res. Notes 13, 352 (2020).
Google Scholar
Dehning, J. et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science 369, 160 (2020).
Atkeson, A., Kopecky, K. A., & Zha, T. A. Estimating and forecasting disease scenarios for COVID-19 with an SIR Model. NBER Working Paper w27335 (2020).
Wang, N., Fu, Y., Zhang, H. & Shi, H. An evaluation of mathematical models for the outbreak of COVID-19. Precis. Clin. Med. 3, 85 (2020).
Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589, 82 (2021).
Google Scholar
Alfano, V. & Ercolano, S. The efficacy of lockdown against COVID-19: A cross-country panel analysis. Appl. Health Econ. Health Policy 18, 509 (2020).
Google Scholar
Arshed, N., Meo, M. S. & Farooq, F. Empirical assessment of government policies and flattening of the COVID19 curve. J. Public Aff. 20, e2333 (2000).
Auger, K. A. et al. Association between statewide school closure and COVID-19 incidence and mortality in the US. JAMA 324, 859 (2020).
Google Scholar
Banerjee, T. & Nayak, A. Coping with being cooped up: Social distancing during COVID-19 among 60+ in the United States. Revista Panamericana de Salud Pública. 44, e81 (2020).
Castex, G., Dechter, E. & Lorca, M. COVID-19: The impact of social distancing policies, cross-country analysis. Econ. Disasters Clim. Change 5, 135 (2021).
Bennett, M. All things equal? Heterogeneity in policy effectiveness against COVID-19 spread in Chile. World Dev. 137, 105208 (2021).
Google Scholar
Castillo, R. C., Staguhn, E. D. & Weston-Farber, E. The effect of state-level stay-at-home orders on COVID-19 infection rates. Am. J. Infect. Control 48, 958 (2020).
Google Scholar
Cobb, J. S. & Seale, M. A. Examining the effect of social distancing on the compound growth rate of COVID-19 at the county level (United States) using statistical analyses and a random forest machine learning model. Public Health 185, 27 (2020).
Google Scholar
Courtemanche, C., Garuccio, J., Le, A., Pinkston, J. & Yelowitz, A. Strong social distancing measures in the United States reduced The COVID-19 growth rate. Health Aff. 39, 1237 (2020).
Dave, D., Friedson, A. I., Matsuzawa, K. & Sabia, J. J. When do shelter-in-place orders fight COVID-19 best? Policy heterogeneity across states and adoption time. Econ Inq. 59, 29 (2021).
Dave, D., Friedson, A., Matsuzawa, K., Sabia, J. J. & Safford, S. JUE insight: Were urban cowboys enough to control COVID-19? Local shelter-in-place orders and coronavirus case growth. J. Urban Econ. 2020, 103294 (2020).
Edelstein, M. et al. SARS-CoV-2 infection in London, England: Changes to community point prevalence around lockdown time, March–May 2020. J. Epidemiol. Commun. Health 75, 185 (2021).
Gallaway, M. S. et al. Trends in COVID-19 incidence after implementation of mitigation measures–Arizona, January 22–August 7, 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 1460 (2020).
Google Scholar
Hsiang, S. et al. The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature 584, 262 (2020).
Google Scholar
Hyafil, A. & Moriña, D. Analysis of the impact of lockdown on the reproduction number of the SARS-Cov-2 in Spain. Gac. Sanit. 35, 453 (2021).
Google Scholar
Islam, N., Sharp, S. J. & Chowell, G. Physical distancing interventions and incidence of coronavirus disease 2019: Natural experiment in 149 countries. BMJ 2020, m2743 (2019).
Lyu, W. & Wehby, G. L. Comparison of estimated rates of coronavirus disease 2019 (COVID-19) in border counties in Iowa without a stay-at-home order and border counties in Illinois with a stay-at-home order. JAMA Netw. Open 3, e2011102 (2020).
Google Scholar
Lyu, W. & Wehby, G. L. Community use of face masks and COVID-19: Evidence from a natural experiment of state mandates in the US. Health Aff. 39, 1419 (2020).
Zhang, R., Li, Y., Zhang, A. L., Wang, Y. & Molina, M. J. Identifying airborne transmission as the dominant route for the spread of COVID-19. PNAS 117, 14857 (2020).
Google Scholar
Fokas, A. S., Athanassios, S., Jesus, C.-M. & Panayotis, G. K. A quantitative framework for exploring exit strategies from the COVID-19 lockdown. Chaos Solitons Fractals 140, 110244 (2020).
Google Scholar
Olumoyin, K. D., Khaliq, A. Q. M., & Furati, F. M. A quantitative framework for exploring exit strategies from the COVID-19 lockdown. arXiv:2104.02603 (2021).
Tam, K.-M., Walker, N. & Moreno, J. Effect of mitigation measures on the spreading of COVID-19 in hard-hit states in the U.S.. PLoS ONE 15, e0240877 (2020).
Google Scholar
Tam, K.-M., Walker, N., & Moreno, J. Projected Development of COVID-19 in Louisiana. arXiv:2004.02859 (2020).
Marchant, R., Samia, N. I., Rosen, O., Tanner, M. A., & Cripps, S. Learning as we go: An examination of the statistical accuracy of COVID19 daily death count predictions. arXiv:2004.04734 (2020).
Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA 323, 1239 (2020).
Google Scholar
Mizumoto, K., Kagaya, K., Zarebski, A. & Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveill 25, 10 (2020).
https://github.com/nytimes/covid-19-data
Holmdahl, I. & Buckee, C. Wrong but useful—What covid-19 epidemiologic models can and cannot tell us. N. Engl. J. Med. 383, 303 (2020).
Google Scholar
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-face-cover-guidance.html
https://www.cdc.gov/mmwr/volumes/69/wr/mm695152a8.htm
Abedi, V. et al. Racial, economic, and health inequality and COVID-19 infection in the United States. J. Racial Ethnic Health Disparities 8, 732 (2021).
Merow, C. & Urban, M. C. Seasonality and uncertainty in global COVID-19 growth rates. PNAS 117(44), 27456 (2020).
Google Scholar
Carlson, C. J., Gomez, A. C. R., Bansal, S. & Ryan, S. J. Misconceptions about weather and seasonality must not misguide COVID-19 response. Nat. Comm. 11, 412 (2020).
Burra, P. et al. Temperature and latitude correlate with SARS-CoV-2 epidemiological variables but not with genomic change worldwide. Evol. Bioinform. https://doi.org/10.1177/1176934321989695 (2021).
Google Scholar
Source: Ecology - nature.com