Fernández, M. H. & Vrba, E. S. Rapoport effect and biomic specialization in African mammals: revisiting the climatic variability hypothesis. J. Biogeogr. 32, 903–918 (2005).
Tokeshi, M. & Arakaki, S. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685, 27–47 (2012).
Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
Google Scholar
Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. 96, 1463–1468 (1999).
Google Scholar
Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).
Google Scholar
Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Ann. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).
Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).
Google Scholar
Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nat. Ecol. Evol. 2, 634–639 (2018).
Google Scholar
Mac Arthur, R. H. & Wilson, E. O. The theory of island biogeography. Vol. 1 (Princeton university press, 2001).
Guégan, J.-F., Lek, S. & Oberdorff, T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391, 382–384 (1998).
Google Scholar
Heidrich, L. et al. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 4, 1204–1212 (2020).
Google Scholar
Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).
Google Scholar
Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1–10 (2013).
Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).
Google Scholar
Ben‐Hur, E. & Kadmon, R. Heterogeneity–diversity relationships in sessile organisms: a unified framework. Ecol. Lett. 23, 193–207 (2020).
Google Scholar
Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).
Tuanmu, M. N. & Jetz, W. A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 24, 1329–1339 (2015).
MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).
Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M. & Kadmon, R. Area–heterogeneity tradeoff and the diversity of ecological communities. Proc. Natl Acad. Sci. 109, 17495–17500 (2012).
Google Scholar
Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).
Gómez, J., Valladares, F. & Puerta-Piñero, C. Differences between structural and functional environmental heterogeneity caused by seed dispersal. Funct. Ecol. 18, 787–792 (2004).
Azevedo, J. C., Jack, S. B., Coulson, R. N. & Wunneburger, D. F. Functional heterogeneity of forest landscapes and the distribution and abundance of the red-cockaded woodpecker. Forest Ecol. Manag. 127, 271–283 (2000).
Watson, D. M. & Herring, M. Mistletoe as a keystone resource: an experimental test. Proc. Royal Soc. B: Biol. Sci. 279, 3853–3860 (2012).
Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).
Altieri, A. H., Silliman, B. R. & Bertness, M. D. Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am. Natur. 169, 195–206 (2007).
Google Scholar
Angelini, C. et al. Foundation species’ overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern US salt marshes. Proc. Royal Soc. B: Biol. Sci. 282, 20150421 (2015).
Angelini, C. & Silliman, B. R. Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree-epiphyte system. Ecology 95, 185–196 (2014).
Google Scholar
Bishop, M. J., Byers, J. E., Marcek, B. J. & Gribben, P. E. Density-dependent facilitation cascades determine epifaunal community structure in temperate Australian mangroves. Ecology 93, 1388–1401 (2012).
Google Scholar
Bishop, M. J., Fraser, J. & Gribben, P. E. Morphological traits and density of foundation species modulate a facilitation cascade in Australian mangroves. Ecology 94, 1927–1936 (2013).
Google Scholar
Thomsen, M. S., Metcalfe, I., South, P. & Schiel, D. R. A host-specific habitat former controls biodiversity across ecological transitions in a rocky intertidal facilitation cascade. Marine Freshwater Res. 67, 144–152 (2016).
Gribben, P. E. et al. Positive and negative interactions control a facilitation cascade. Ecosphere 8, e02065 (2017).
Shurin, J. B. et al. A cross‐ecosystem comparison of the strength of trophic cascades. Ecol. Lett. 5, 785–791 (2002).
Thomsen, M. S. Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquat. Invas. 5, 341–346 (2010).
Gribben, P. E. et al. Facilitation cascades in marine ecosystems: a synthesis and future directions. Oceanogr. Marine Biol. 57, 127–168 (2019).
Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).
Thomsen, M. S. et al. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integrat. Comparat. Biol. 50, 158–175 (2010).
Thomsen, M. S. et al. Modified kelp seasonality and invertebrate diversity where an invasive kelp co-occurs with native mussels. Marine Biol. 165, 173 (2018).
Borst, A. C. et al. Food or furniture: separating trophic and non‐trophic effects of Spanish moss to explain its high invertebrate diversity. Ecosphere 10, e02846 (2019).
Bologna, P. A. & Heck, K. L. Jr. Macrofaunal associations with seagrass epiphytes: relative importance of trophic and structural characteristics. J. Exp. Marine Biol. Ecol. 242, 21–39 (1999).
Huston, M. A. & Huston, M. A. Biological diversity: the coexistence of species. (Cambridge University Press, 1994).
Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).
Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).
Thompson, K., Askew, A., Grime, J., Dunnett, N. & Willis, A. Biodiversity, ecosystem function and plant traits in mature and immature plant communities. Funct. Ecol. 19, 355–358 (2005).
Duffy, J. E. et al. Biodiversity mediates top–down control in eelgrass ecosystems: a global comparative‐experimental approach. Ecol. Lett. 18, 696–705 (2015).
Google Scholar
Arft, A. et al. Responses of tundra plants to experimental warming: meta‐analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).
Thomas, M. A. & Klaper, R. Genomics for the ecological toolbox. Trends Ecol. Evol. 19, 439–445 (2004).
Google Scholar
Thomsen, M. S. et al. A sixth‐level habitat cascade increases biodiversity in an intertidal estuary. Ecol. Evol. 6, 8291–8303 (2016).
Google Scholar
Ricklefs, R. E. Environmental heterogeneity and plant species diversity: a hypothesis. Am. Natur. 111, 376–381 (1977).
Lundholm, J. T. Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. J. Vegetation Sci. 20, 377–391 (2009).
Tamme, R., Hiiesalu, I., Laanisto, L., Szava‐Kovats, R. & Pärtel, M. Environmental heterogeneity, species diversity and co‐existence at different spatial scales. J. Vegetation Sci. 21, 796–801 (2010).
Hughes, A. R., Gribben, P. E., Kimbro, D. L. & Bishop, M. J. Additive and site-specific effects of two foundation species on invertebrate community structure. Mar. Ecol. Prog. Series 508, 129–138 (2014).
Google Scholar
Yakovis, E. & Artemieva, A. Cockles, barnacles and ascidians compose a subtidal facilitation cascade with multiple hierarchical levels of foundation species. Sci. Rep. 7, 1–11 (2017).
Google Scholar
Thomsen, M. S., Stæhr, P. A., Nejrup, L. & Schiel, D. R. Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquat. Invas. 8, 133–145 (2013).
Littler, M. M. Morphological form and photosynthetic performances of marine macroalgae: tests of a functional/form hypothesis. Botan. Marina 22, 161–165 (1980).
Padilla, D. K. & Allen, B. J. Paradigm lost: reconsidering functional form and group hypotheses in marine ecology. J. Exp. Mar. Biol. Ecol. 250, 207–221 (2000).
Google Scholar
Wainwright, P. C. Functional morphology as a tool in ecological research. Ecol. Morphol.: Int. Organismal Biol. 42, 59 (1994).
Angelini, C. & Briggs, K. Spillover of secondary foundation species transforms community structure and accelerates decomposition in oak savannas. Ecosystems, 18, 780–791 (2015).
Gutiérrez, J. L., Bagur, M. & Palomo, M. G. Algal epibionts as co-engineers in mussel beds: effects on abiotic conditions and mobile interstitial invertebrates. Diversity 11, 17 (2019).
He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).
Google Scholar
Watson, D. M. Mistletoe—a keystone resource in forests and woodlands worldwide. Ann. Rev. Ecol. Syst. 32, 219–249 (2001).
Mújica, E., Raventós, J., González, E. & Bonet, A. Long-term hurricane effects on populations of two epiphytic orchid species from Guanahacabibes Peninsula. Cuba. Lankesteriana Int. J. Orchidol. 13, 47–55 (2013).
Lobelle, D., Kenyon, E. J., Cook, K. J. & Bull, J. C. Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics. PLoS ONE 8, e57072 (2013).
Google Scholar
Svirski, E., Beer, S. & Friedlander, M. Gracilaria conferta and its epiphytes: Interrelationship between the red seaweed and Ulva cf. lactuca. Hydrobiologia 260, 391–396 (1993).
Cummins, S., Roberts, D. & Zimmerman, K. Effects of the green macroalga Enteromorpha intestinalis on macrobenthic and seagrass assemblages in a shallow coastal estuary. Marine Ecol. Prog. Series 266, 77–87 (2004).
Google Scholar
Holmquist, J. G. Disturbance and gap formation in a marine benthic mosaic: influence of shifting macroalgal patches on seagrass structure and mobile invertebrates. Marine Ecol. Prog. Series 158, 121–130 (1997).
Google Scholar
Siciliano, A., Schiel, D. R. & Thomsen, M. S. Effects of local anthropogenic stressors on a habitat cascade in an estuarine seagrass system. Marine Freshwater Res. 70, 1129–1142 (2019).
Field, R. et al. Spatial species‐richness gradients across scales: a meta‐analysis. J. Biogeogr. 36, 132–147 (2009).
Šímová, I., Li, Y. M. & Storch, D. Relationship between species richness and productivity in plants: the role of sampling effect, heterogeneity and species pool. J. Ecol. 101, 161–170 (2013).
Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).
Google Scholar
Berlow, E. L. Strong effects of weak interactions in ecological communities. Nature 398, 330–334 (1999).
Google Scholar
Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).
Google Scholar
Paine, R. T., Tegner, M. J. & Johnson, E. A. Compounded perturbations yield ecological surprises. Ecosystems 1, 535–545 (1998).
Christensen, M. R. et al. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Glob. Change Biol. 12, 2316–2322 (2006).
Google Scholar
Strain, E. M. et al. A global analysis of complexity–biodiversity relationships on marine artificial structures. Glob. Ecol. Biogeogr. 30, 140–153 (2021).
Richardson, J. T. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 6, 135–147 (2011).
Clarke, K. R., Gorley, R., Somerfield, P. J. & Warwick, R. Change in marine communities: an approach to statistical analysis and interpretation. (Primer-E Ltd, 2014).
Gartner, A., Tuya, F., Lavery, P. S. & McMahon, K. Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. J. Exp. Marine Biol. Ecol. 439, 143–151 (2013).
Green, D. S. & Crowe, T. P. Context-and density-dependent effects of introduced oysters on biodiversity. Biol. Invasions 16, 1145–1163 (2014).
Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).
Borer, E. et al. What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005).
Vellend, M. Conceptual synthesis in community ecology. Quart. Rev. Biol. 85, 183–206 (2010).
Google Scholar
Chase, J. M. & Leibold, M. A. Ecological niches: linking classical and contemporary approaches. (University of Chicago Press, 2003).
Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).
Google Scholar
Anderson, M. J. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Veech, J. A. & Crist, T. O. Habitat and climate heterogeneity maintain beta‐diversity of birds among landscapes within ecoregions. Glob. Ecol. Biogeogr. 16, 650–656 (2007).
Turner, M. G. Landscape ecology: the effect of pattern on process. Ann. Rev. Ecol. Syst. 20, 171–197 (1989).
Wilson, M. V. & Shmida, A. Measuring beta diversity with presence-absence data. J. Ecol. 72, 1055–1064 (1984).
Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).
Google Scholar
Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80 (2016).
Google Scholar
McAfee, D., Cole, V. J. & Bishop, M. J. Latitudinal gradients in ecosystem engineering by oysters vary across habitats. Ecology 97, 929–939 (2016).
Google Scholar
Altieri, A. H. & Irving, A. D. Species coexistence and the superior ability of an invasive species to exploit a facilitation cascade habitat. PeerJ 5, e2848 (2017).
Google Scholar
Lindenmayer, D., Franklin, J. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conser. 131, 433–445 (2006).
Le Roux, D. S., Ikin, K., Lindenmayer, D. B., Manning, A. D. & Gibbons, P. Single large or several small? Applying biogeographic principles to tree-level conservation and biodiversity offsets. Biol. Conser. 191, 558–566 (2015).
Wernberg, T. et al. Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep. 8, 1–8 (2018).
Macintosh, D. J. & Ashton, E. C. A review of mangrove biodiversity conservation and management. Centre for tropical ecosystems research. (University of Aarhus, 2002).
Grabowski, J. H. et al. Economic valuation of ecosystem services provided by oyster reefs. Bioscience 62, 900–909 (2012).
Renzi, J. J., He, Q. & Silliman, B. R. Harnessing positive species interactions to enhance coastal wetland restoration. Front. Ecol. Evol. 7, 131 (2019).
Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. 112, 14295–14300 (2015).
Google Scholar
Bulleri, F. et al. Harnessing positive species interactions as a tool against climate-driven loss of coastal biodiversity. PLoS Biol. 16, e2006852 (2018).
Google Scholar
Brancalion, P. H. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
Google Scholar
Burns, K. Meta-community structure of vascular epiphytes in a temperate rainforest. Botany 86, 1252–1259 (2008).
Chapman, M. & Blockley, D. Engineering novel habitats on urban infrastructure to increase intertidal biodiversity. Oecologia 161, 625–635 (2009).
Google Scholar
Schneider-Mayerson, M. Some islands will rise: Singapore in the Anthropocene. Resilience: J. Environ. Human. 4, 166–184 (2017).
Wangpraseurt, D. et al. Bionic 3D printed corals. Nat. Commun. 11, 1–8 (2020).
de Alvarenga, R. A. F., Galindro, B. M., de Fátima Helpa, C. & Soares, S. R. The recycling of oyster shells: an environmental analysis using Life Cycle Assessment. J. Environ. Manag. 106, 102–109 (2012).
Google Scholar
Morris, J. P., Backeljau, T. & Chapelle, G. Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Rev. Aqua. 11, 42–57 (2019).
Hylander, K. & Nemomissa, S. Home garden coffee as a repository of epiphyte biodiversity in Ethiopia. Front. Ecol. Environ. 6, 524–528 (2008).
Franken, R. J. et al. Effects of interstitial refugia and current velocity on growth of the amphipod Gammarus pulex Linnaeus. J. North Am. Bentholog. Soc. 25, 656–663 (2006).
Bishop, M. et al. Facilitation of molluscan assemblages in mangroves by the fucalean alga Hormosira banksii. Marine Ecol. Prog. Series 392, 111–122 (2009).
Google Scholar
Macreadie, P. I., Kimbro, D. L., Fourgerit, V., Leto, J. & Hughes, A. R. Effects of Pinna clams on benthic macrofauna and the possible implications of their removal from seagrass ecosystems. J. Molluscan Studies 80, 102–106 (2014).
Thomsen, M. S. et al. Earthquake-driven destruction of an intertidal habitat cascade. Aquat. Botany 164, 103217 (2020).
Enochs, I. C., Toth, L. T., Brandtneris, V. W., Afflerbach, J. C. & Manzello, D. P. Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Marine Ecol. Prog. Series 438, 105–118 (2011).
Google Scholar
Source: Ecology - nature.com