in

Heterogeneity within and among co-occurring foundation species increases biodiversity

  • 1.

    Fernández, M. H. & Vrba, E. S. Rapoport effect and biomic specialization in African mammals: revisiting the climatic variability hypothesis. J. Biogeogr. 32, 903–918 (2005).

    Google Scholar 

  • 2.

    Tokeshi, M. & Arakaki, S. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685, 27–47 (2012).

    Google Scholar 

  • 3.

    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. 96, 1463–1468 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Ann. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).

    Google Scholar 

  • 7.

    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    PubMed 

    Google Scholar 

  • 8.

    Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nat. Ecol. Evol. 2, 634–639 (2018).

    PubMed 

    Google Scholar 

  • 9.

    Mac Arthur, R. H. & Wilson, E. O. The theory of island biogeography. Vol. 1 (Princeton university press, 2001).

  • 10.

    Guégan, J.-F., Lek, S. & Oberdorff, T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391, 382–384 (1998).

    ADS 

    Google Scholar 

  • 11.

    Heidrich, L. et al. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 4, 1204–1212 (2020).

    PubMed 

    Google Scholar 

  • 12.

    Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).

    ADS 
    CAS 

    Google Scholar 

  • 13.

    Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1–10 (2013).

    Google Scholar 

  • 14.

    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).

    PubMed 

    Google Scholar 

  • 15.

    Ben‐Hur, E. & Kadmon, R. Heterogeneity–diversity relationships in sessile organisms: a unified framework. Ecol. Lett. 23, 193–207 (2020).

    PubMed 

    Google Scholar 

  • 16.

    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).

    Google Scholar 

  • 17.

    Tuanmu, M. N. & Jetz, W. A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 24, 1329–1339 (2015).

    Google Scholar 

  • 18.

    MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).

    Google Scholar 

  • 19.

    Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M. & Kadmon, R. Area–heterogeneity tradeoff and the diversity of ecological communities. Proc. Natl Acad. Sci. 109, 17495–17500 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).

    Google Scholar 

  • 21.

    Gómez, J., Valladares, F. & Puerta-Piñero, C. Differences between structural and functional environmental heterogeneity caused by seed dispersal. Funct. Ecol. 18, 787–792 (2004).

    Google Scholar 

  • 22.

    Azevedo, J. C., Jack, S. B., Coulson, R. N. & Wunneburger, D. F. Functional heterogeneity of forest landscapes and the distribution and abundance of the red-cockaded woodpecker. Forest Ecol. Manag. 127, 271–283 (2000).

    Google Scholar 

  • 23.

    Watson, D. M. & Herring, M. Mistletoe as a keystone resource: an experimental test. Proc. Royal Soc. B: Biol. Sci. 279, 3853–3860 (2012).

    Google Scholar 

  • 24.

    Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).

    Google Scholar 

  • 25.

    Altieri, A. H., Silliman, B. R. & Bertness, M. D. Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am. Natur. 169, 195–206 (2007).

    PubMed 

    Google Scholar 

  • 26.

    Angelini, C. et al. Foundation species’ overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern US salt marshes. Proc. Royal Soc. B: Biol. Sci. 282, 20150421 (2015).

  • 27.

    Angelini, C. & Silliman, B. R. Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree-epiphyte system. Ecology 95, 185–196 (2014).

    PubMed 

    Google Scholar 

  • 28.

    Bishop, M. J., Byers, J. E., Marcek, B. J. & Gribben, P. E. Density-dependent facilitation cascades determine epifaunal community structure in temperate Australian mangroves. Ecology 93, 1388–1401 (2012).

    PubMed 

    Google Scholar 

  • 29.

    Bishop, M. J., Fraser, J. & Gribben, P. E. Morphological traits and density of foundation species modulate a facilitation cascade in Australian mangroves. Ecology 94, 1927–1936 (2013).

    PubMed 

    Google Scholar 

  • 30.

    Thomsen, M. S., Metcalfe, I., South, P. & Schiel, D. R. A host-specific habitat former controls biodiversity across ecological transitions in a rocky intertidal facilitation cascade. Marine Freshwater Res. 67, 144–152 (2016).

    Google Scholar 

  • 31.

    Gribben, P. E. et al. Positive and negative interactions control a facilitation cascade. Ecosphere 8, e02065 (2017).

    Google Scholar 

  • 32.

    Shurin, J. B. et al. A cross‐ecosystem comparison of the strength of trophic cascades. Ecol. Lett. 5, 785–791 (2002).

    Google Scholar 

  • 33.

    Thomsen, M. S. Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquat. Invas. 5, 341–346 (2010).

    Google Scholar 

  • 34.

    Gribben, P. E. et al. Facilitation cascades in marine ecosystems: a synthesis and future directions. Oceanogr. Marine Biol. 57, 127–168 (2019).

    Google Scholar 

  • 35.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Google Scholar 

  • 36.

    Thomsen, M. S. et al. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integrat. Comparat. Biol. 50, 158–175 (2010).

    Google Scholar 

  • 37.

    Thomsen, M. S. et al. Modified kelp seasonality and invertebrate diversity where an invasive kelp co-occurs with native mussels. Marine Biol. 165, 173 (2018).

    Google Scholar 

  • 38.

    Borst, A. C. et al. Food or furniture: separating trophic and non‐trophic effects of Spanish moss to explain its high invertebrate diversity. Ecosphere 10, e02846 (2019).

    Google Scholar 

  • 39.

    Bologna, P. A. & Heck, K. L. Jr. Macrofaunal associations with seagrass epiphytes: relative importance of trophic and structural characteristics. J. Exp. Marine Biol. Ecol. 242, 21–39 (1999).

    Google Scholar 

  • 40.

    Huston, M. A. & Huston, M. A. Biological diversity: the coexistence of species. (Cambridge University Press, 1994).

  • 41.

    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Google Scholar 

  • 42.

    Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).

    Google Scholar 

  • 43.

    Thompson, K., Askew, A., Grime, J., Dunnett, N. & Willis, A. Biodiversity, ecosystem function and plant traits in mature and immature plant communities. Funct. Ecol. 19, 355–358 (2005).

    Google Scholar 

  • 44.

    Duffy, J. E. et al. Biodiversity mediates top–down control in eelgrass ecosystems: a global comparative‐experimental approach. Ecol. Lett. 18, 696–705 (2015).

    PubMed 

    Google Scholar 

  • 45.

    Arft, A. et al. Responses of tundra plants to experimental warming: meta‐analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).

    Google Scholar 

  • 46.

    Thomas, M. A. & Klaper, R. Genomics for the ecological toolbox. Trends Ecol. Evol. 19, 439–445 (2004).

    PubMed 

    Google Scholar 

  • 47.

    Thomsen, M. S. et al. A sixth‐level habitat cascade increases biodiversity in an intertidal estuary. Ecol. Evol. 6, 8291–8303 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Ricklefs, R. E. Environmental heterogeneity and plant species diversity: a hypothesis. Am. Natur. 111, 376–381 (1977).

    Google Scholar 

  • 49.

    Lundholm, J. T. Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. J. Vegetation Sci. 20, 377–391 (2009).

    Google Scholar 

  • 50.

    Tamme, R., Hiiesalu, I., Laanisto, L., Szava‐Kovats, R. & Pärtel, M. Environmental heterogeneity, species diversity and co‐existence at different spatial scales. J. Vegetation Sci. 21, 796–801 (2010).

    Google Scholar 

  • 51.

    Hughes, A. R., Gribben, P. E., Kimbro, D. L. & Bishop, M. J. Additive and site-specific effects of two foundation species on invertebrate community structure. Mar. Ecol. Prog. Series 508, 129–138 (2014).

    ADS 

    Google Scholar 

  • 52.

    Yakovis, E. & Artemieva, A. Cockles, barnacles and ascidians compose a subtidal facilitation cascade with multiple hierarchical levels of foundation species. Sci. Rep. 7, 1–11 (2017).

    CAS 

    Google Scholar 

  • 53.

    Thomsen, M. S., Stæhr, P. A., Nejrup, L. & Schiel, D. R. Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquat. Invas. 8, 133–145 (2013).

    Google Scholar 

  • 54.

    Littler, M. M. Morphological form and photosynthetic performances of marine macroalgae: tests of a functional/form hypothesis. Botan. Marina 22, 161–165 (1980).

    Google Scholar 

  • 55.

    Padilla, D. K. & Allen, B. J. Paradigm lost: reconsidering functional form and group hypotheses in marine ecology. J. Exp. Mar. Biol. Ecol. 250, 207–221 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Wainwright, P. C. Functional morphology as a tool in ecological research. Ecol. Morphol.: Int. Organismal Biol. 42, 59 (1994).

    Google Scholar 

  • 57.

    Angelini, C. & Briggs, K. Spillover of secondary foundation species transforms community structure and accelerates decomposition in oak savannas. Ecosystems, 18, 780–791 (2015).

    Google Scholar 

  • 58.

    Gutiérrez, J. L., Bagur, M. & Palomo, M. G. Algal epibionts as co-engineers in mussel beds: effects on abiotic conditions and mobile interstitial invertebrates. Diversity 11, 17 (2019).

    Google Scholar 

  • 59.

    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).

    PubMed 

    Google Scholar 

  • 60.

    Watson, D. M. Mistletoe—a keystone resource in forests and woodlands worldwide. Ann. Rev. Ecol. Syst. 32, 219–249 (2001).

    Google Scholar 

  • 61.

    Mújica, E., Raventós, J., González, E. & Bonet, A. Long-term hurricane effects on populations of two epiphytic orchid species from Guanahacabibes Peninsula. Cuba. Lankesteriana Int. J. Orchidol. 13, 47–55 (2013).

    Google Scholar 

  • 62.

    Lobelle, D., Kenyon, E. J., Cook, K. J. & Bull, J. C. Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics. PLoS ONE 8, e57072 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Svirski, E., Beer, S. & Friedlander, M. Gracilaria conferta and its epiphytes: Interrelationship between the red seaweed and Ulva cf. lactuca. Hydrobiologia 260, 391–396 (1993).

    Google Scholar 

  • 64.

    Cummins, S., Roberts, D. & Zimmerman, K. Effects of the green macroalga Enteromorpha intestinalis on macrobenthic and seagrass assemblages in a shallow coastal estuary. Marine Ecol. Prog. Series 266, 77–87 (2004).

    ADS 

    Google Scholar 

  • 65.

    Holmquist, J. G. Disturbance and gap formation in a marine benthic mosaic: influence of shifting macroalgal patches on seagrass structure and mobile invertebrates. Marine Ecol. Prog. Series 158, 121–130 (1997).

    ADS 

    Google Scholar 

  • 66.

    Siciliano, A., Schiel, D. R. & Thomsen, M. S. Effects of local anthropogenic stressors on a habitat cascade in an estuarine seagrass system. Marine Freshwater Res. 70, 1129–1142 (2019).

    Google Scholar 

  • 67.

    Field, R. et al. Spatial species‐richness gradients across scales: a meta‐analysis. J. Biogeogr. 36, 132–147 (2009).

    Google Scholar 

  • 68.

    Šímová, I., Li, Y. M. & Storch, D. Relationship between species richness and productivity in plants: the role of sampling effect, heterogeneity and species pool. J. Ecol. 101, 161–170 (2013).

    Google Scholar 

  • 69.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    PubMed 

    Google Scholar 

  • 70.

    Berlow, E. L. Strong effects of weak interactions in ecological communities. Nature 398, 330–334 (1999).

    ADS 
    CAS 

    Google Scholar 

  • 71.

    Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).

    PubMed 

    Google Scholar 

  • 72.

    Paine, R. T., Tegner, M. J. & Johnson, E. A. Compounded perturbations yield ecological surprises. Ecosystems 1, 535–545 (1998).

    Google Scholar 

  • 73.

    Christensen, M. R. et al. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Glob. Change Biol. 12, 2316–2322 (2006).

    ADS 

    Google Scholar 

  • 74.

    Strain, E. M. et al. A global analysis of complexity–biodiversity relationships on marine artificial structures. Glob. Ecol. Biogeogr. 30, 140–153 (2021).

    Google Scholar 

  • 75.

    Richardson, J. T. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 6, 135–147 (2011).

    Google Scholar 

  • 76.

    Clarke, K. R., Gorley, R., Somerfield, P. J. & Warwick, R. Change in marine communities: an approach to statistical analysis and interpretation. (Primer-E Ltd, 2014).

  • 77.

    Gartner, A., Tuya, F., Lavery, P. S. & McMahon, K. Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. J. Exp. Marine Biol. Ecol. 439, 143–151 (2013).

    Google Scholar 

  • 78.

    Green, D. S. & Crowe, T. P. Context-and density-dependent effects of introduced oysters on biodiversity. Biol. Invasions 16, 1145–1163 (2014).

    Google Scholar 

  • 79.

    Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).

    Google Scholar 

  • 80.

    Borer, E. et al. What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005).

    Google Scholar 

  • 81.

    Vellend, M. Conceptual synthesis in community ecology. Quart. Rev. Biol. 85, 183–206 (2010).

    PubMed 

    Google Scholar 

  • 82.

    Chase, J. M. & Leibold, M. A. Ecological niches: linking classical and contemporary approaches. (University of Chicago Press, 2003).

  • 83.

    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

    ADS 
    PubMed 

    Google Scholar 

  • 84.

    Anderson, M. J. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 85.

    Veech, J. A. & Crist, T. O. Habitat and climate heterogeneity maintain beta‐diversity of birds among landscapes within ecoregions. Glob. Ecol. Biogeogr. 16, 650–656 (2007).

    Google Scholar 

  • 86.

    Turner, M. G. Landscape ecology: the effect of pattern on process. Ann. Rev. Ecol. Syst. 20, 171–197 (1989).

    Google Scholar 

  • 87.

    Wilson, M. V. & Shmida, A. Measuring beta diversity with presence-absence data. J. Ecol. 72, 1055–1064 (1984).

    Google Scholar 

  • 88.

    Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).

    PubMed 

    Google Scholar 

  • 89.

    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80 (2016).

    PubMed 

    Google Scholar 

  • 90.

    McAfee, D., Cole, V. J. & Bishop, M. J. Latitudinal gradients in ecosystem engineering by oysters vary across habitats. Ecology 97, 929–939 (2016).

    PubMed 

    Google Scholar 

  • 91.

    Altieri, A. H. & Irving, A. D. Species coexistence and the superior ability of an invasive species to exploit a facilitation cascade habitat. PeerJ 5, e2848 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Lindenmayer, D., Franklin, J. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conser. 131, 433–445 (2006).

    Google Scholar 

  • 93.

    Le Roux, D. S., Ikin, K., Lindenmayer, D. B., Manning, A. D. & Gibbons, P. Single large or several small? Applying biogeographic principles to tree-level conservation and biodiversity offsets. Biol. Conser. 191, 558–566 (2015).

    Google Scholar 

  • 94.

    Wernberg, T. et al. Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep. 8, 1–8 (2018).

    Google Scholar 

  • 95.

    Macintosh, D. J. & Ashton, E. C. A review of mangrove biodiversity conservation and management. Centre for tropical ecosystems research. (University of Aarhus, 2002).

  • 96.

    Grabowski, J. H. et al. Economic valuation of ecosystem services provided by oyster reefs. Bioscience 62, 900–909 (2012).

    Google Scholar 

  • 97.

    Renzi, J. J., He, Q. & Silliman, B. R. Harnessing positive species interactions to enhance coastal wetland restoration. Front. Ecol. Evol. 7, 131 (2019).

    Google Scholar 

  • 98.

    Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. 112, 14295–14300 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Bulleri, F. et al. Harnessing positive species interactions as a tool against climate-driven loss of coastal biodiversity. PLoS Biol. 16, e2006852 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Brancalion, P. H. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Burns, K. Meta-community structure of vascular epiphytes in a temperate rainforest. Botany 86, 1252–1259 (2008).

    Google Scholar 

  • 102.

    Chapman, M. & Blockley, D. Engineering novel habitats on urban infrastructure to increase intertidal biodiversity. Oecologia 161, 625–635 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 103.

    Schneider-Mayerson, M. Some islands will rise: Singapore in the Anthropocene. Resilience: J. Environ. Human. 4, 166–184 (2017).

    Google Scholar 

  • 104.

    Wangpraseurt, D. et al. Bionic 3D printed corals. Nat. Commun. 11, 1–8 (2020).

    Google Scholar 

  • 105.

    de Alvarenga, R. A. F., Galindro, B. M., de Fátima Helpa, C. & Soares, S. R. The recycling of oyster shells: an environmental analysis using Life Cycle Assessment. J. Environ. Manag. 106, 102–109 (2012).

    CAS 

    Google Scholar 

  • 106.

    Morris, J. P., Backeljau, T. & Chapelle, G. Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Rev. Aqua. 11, 42–57 (2019).

    Google Scholar 

  • 107.

    Hylander, K. & Nemomissa, S. Home garden coffee as a repository of epiphyte biodiversity in Ethiopia. Front. Ecol. Environ. 6, 524–528 (2008).

    Google Scholar 

  • 108.

    Franken, R. J. et al. Effects of interstitial refugia and current velocity on growth of the amphipod Gammarus pulex Linnaeus. J. North Am. Bentholog. Soc. 25, 656–663 (2006).

    Google Scholar 

  • 109.

    Bishop, M. et al. Facilitation of molluscan assemblages in mangroves by the fucalean alga Hormosira banksii. Marine Ecol. Prog. Series 392, 111–122 (2009).

    ADS 

    Google Scholar 

  • 110.

    Macreadie, P. I., Kimbro, D. L., Fourgerit, V., Leto, J. & Hughes, A. R. Effects of Pinna clams on benthic macrofauna and the possible implications of their removal from seagrass ecosystems. J. Molluscan Studies 80, 102–106 (2014).

    Google Scholar 

  • 111.

    Thomsen, M. S. et al. Earthquake-driven destruction of an intertidal habitat cascade. Aquat. Botany 164, 103217 (2020).

    Google Scholar 

  • 112.

    Enochs, I. C., Toth, L. T., Brandtneris, V. W., Afflerbach, J. C. & Manzello, D. P. Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Marine Ecol. Prog. Series 438, 105–118 (2011).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Richard Leakey (1944–2022)

    Preparing global online learners for the clean energy transition