in

Matrix condition mediates the effects of habitat fragmentation on species extinction risk

  • 1.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

    Google Scholar 

  • 7.

    Fletcher, R. J. et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15 (2018).

    Google Scholar 

  • 8.

    Fahrig, L. Habitat fragmentation: a long and tangled tale. Glob. Ecol. Biogeogr. 28, 33–41 (2019).

    Google Scholar 

  • 9.

    Fahrig, L. et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 230, 179–186 (2019).

    Google Scholar 

  • 10.

    Miller-Rushing, A. J. et al. How does habitat fragmentation affect biodiversity? A controversial question at the core of conservation biology. Biol. Conserv. 232, 271–273 (2019).

    Google Scholar 

  • 11.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Google Scholar 

  • 12.

    Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).

    Google Scholar 

  • 13.

    Hanski, I. Habitat fragmentation and species richness. J. Biogeogr. 42, 989–993 (2015).

    Google Scholar 

  • 14.

    Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Pardini, R. et al. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Villard, M.-A. & Metzger, J. P. Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J. Appl. Ecol. 51, 309–318 (2014).

    Google Scholar 

  • 18.

    Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl Acad. Sci. USA 105, 20770–20775 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Franklin, J. F. & Lindenmayer, D. B. Importance of matrix habitats in maintaining biological diversity. Proc. Natl Acad. Sci. USA 106, 349–350 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).

  • 21.

    Haila, Y. A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol. Appl. 12, 321–334 (2002).

    Google Scholar 

  • 22.

    Watson, D. M. A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems. J. Biogeogr. 29, 823–834 (2002).

    Google Scholar 

  • 23.

    Watson, J. E. M., Whittaker, R. J. & Freudenberger, D. Bird community responses to habitat fragmentation: how consistent are they across landscapes? J. Biogeogr. 32, 1353–1370 (2005).

    Google Scholar 

  • 24.

    Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Daily, G. C., Ceballos, G., Pacheco, J., Suzán, G. & Sánchez‐Azofeifa, A. Countryside biogeography of Neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv. Biol. 17, 1814–1826 (2003).

    Google Scholar 

  • 26.

    Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Perfecto, I. & Vandermeer, J. Biodiversity conservation in tropical agroecosystems. Ann. N. Y. Acad. Sci. 1134, 173–200 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • 28.

    Law, E. A. & Wilson, K. A. Providing context for the land-sharing and land-sparing debate. Conserv. Lett. 8, 404–413 (2015).

    Google Scholar 

  • 29.

    Phalan, B. T. What have we learned from the land sparing-sharing model? Sustainability 10, 1760 (2018).

    Google Scholar 

  • 30.

    Balmford, B., Green, R. E., Onial, M., Phalan, B. & Balmford, A. How imperfect can land sparing be before land sharing is more favourable for wild species? J. Appl. Ecol. 56, 73–84 (2019).

    Google Scholar 

  • 31.

    Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223 (2010).

    Google Scholar 

  • 32.

    Ferreira, A. S., Peres, C. A., Bogoni, J. A. & Cassano, C. R. Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mammal. Rev. 48, 312–327 (2018).

    Google Scholar 

  • 33.

    Battin, J. When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491 (2004).

    Google Scholar 

  • 34.

    Martin, L. J., Blossey, B. & Ellis, E. Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations. Front. Ecol. Environ. 10, 195–201 (2012).

    Google Scholar 

  • 35.

    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • 36.

    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Arroyo‐Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).

    PubMed 

    Google Scholar 

  • 38.

    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B Biol. Sci. 267, 1947–1952 (2000).

    CAS 

    Google Scholar 

  • 39.

    Fisher, D. O., Blomberg, S. P. & Owens, I. P. F. Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials. Proc. R. Soc. Lond. B Biol. Sci. 270, 1801–1808 (2003).

    Google Scholar 

  • 40.

    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H. & Ceballos, G. Multiple ecological pathways to extinction in mammals. Proc. Natl Acad. Sci. USA 106, 10702–10705 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Di Marco, M., Collen, B., Rondinini, C. & Mace, G. M. Historical drivers of extinction risk: using past evidence to direct future monitoring. Proc. R. Soc. B Biol. Sci. 282, 20150928 (2015).

    Google Scholar 

  • 43.

    Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Rondinini, C., Marco, M. D., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: long-term viability of the IUCN Red List. Conserv. Lett. 7, 126–130 (2014).

    Google Scholar 

  • 45.

    Bland, L. M. et al. Cost-effective assessment of extinction risk with limited information. J. Appl. Ecol. 52, 861–870 (2015).

    Google Scholar 

  • 46.

    Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl Acad. Sci. USA 114, 7635–7640 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Lucas, P. M., González‐Suárez, M. & Revilla, E. Range area matters, and so does spatial configuration: predicting conservation status in vertebrates. Ecography 42, 1103–1114 (2019).

    Google Scholar 

  • 48.

    Arregoitia, L. D. V. Biases, gaps, and opportunities in mammalian extinction risk research. Mammal. Rev. 46, 17–29 (2016).

    Google Scholar 

  • 49.

    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B Biol. Sci. 366, 2633–2641 (2011).

    Google Scholar 

  • 50.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).

    Google Scholar 

  • 52.

    Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Breiman, L. Random forests. Mach. Learn 45, 5–32 (2001).

    MATH 

    Google Scholar 

  • 55.

    Laurance, W. F. Ecological correlates of extinction proneness in Australian tropical rain forest mammals. Conserv. Biol. 5, 79–89 (1991).

    Google Scholar 

  • 56.

    Viveiros de Castro, E. B. & Fernandez, F. A. S. Determinants of differential extinction vulnerabilities of small mammals in Atlantic forest fragments in Brazil. Biol. Conserv. 119, 73–80 (2004).

    Google Scholar 

  • 57.

    Reider, I. J., Donnelly, M. A. & Watling, J. I. The influence of matrix quality on species richness in remnant forest. Landsc. Ecol. 33, 1147–1157 (2018).

    Google Scholar 

  • 58.

    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).

    PubMed 

    Google Scholar 

  • 59.

    Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Tracewski, Ł. et al. Toward quantification of the impact of 21st-century deforestation on the extinction risk of terrestrial vertebrates. Conserv. Biol. 30, 1070–1079 (2016).

    PubMed 

    Google Scholar 

  • 61.

    Cardillo, M. et al. The predictability of extinction: biological and external correlates of decline in mammals. Proc. R. Soc. B Biol. Sci. 275, 1441–1448 (2008).

    Google Scholar 

  • 62.

    Murray, K. A., Arregoitia, L. D. V., Davidson, A., Marco, M. D. & Fonzo, M. M. I. D. Threat to the point: improving the value of comparative extinction risk analysis for conservation action. Glob. Change Biol. 20, 483–494 (2014).

    ADS 

    Google Scholar 

  • 63.

    Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).

    PubMed 

    Google Scholar 

  • 64.

    Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Watling, J. I., Nowakowski, A. J., Donnelly, M. A. & Orrock, J. L. Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Glob. Ecol. Biogeogr. 20, 209–217 (2011).

    Google Scholar 

  • 66.

    Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecol. Soc. 14, 21 (2009).

  • 67.

    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proc. Natl Acad. Sci. USA 112, 4531–4540 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    May, S. A. & Norton, T. W. Influence of fragmentation and disturbance on the potential impact of feral predators on native fauna in Australian forest ecosystems. Wildl. Res 23, 387–400 (1996).

    Google Scholar 

  • 69.

    Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian Forest vertebrates. Conserv. Biol. 15, 1490–1505 (2001).

    Google Scholar 

  • 70.

    Laurance, W. F. & Useche, D. C. Environmental synergisms and extinctions of tropical species. Conserv. Biol. 23, 1427–1437 (2009).

    PubMed 

    Google Scholar 

  • 71.

    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B Biol. Sci. 283, 20152592 (2016).

    Google Scholar 

  • 72.

    Didham, R. K., Kapos, V. & Ewers, R. M. Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121, 161–170 (2012).

    Google Scholar 

  • 73.

    Ruffell, J., Banks‐Leite, C. & Didham, R. K. Accounting for the causal basis of collinearity when measuring the effects of habitat loss versus habitat fragmentation. Oikos 125, 117–125 (2016).

    Google Scholar 

  • 74.

    Morante‐Filho, J. C. et al. Direct and cascading effects of landscape structure on tropical forest and non-forest frugivorous birds. Ecol. Appl. 28, 2024–2032 (2018).

    PubMed 

    Google Scholar 

  • 75.

    Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).

    PubMed 

    Google Scholar 

  • 76.

    Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).

    PubMed 

    Google Scholar 

  • 77.

    Segan, D. B., Murray, K. A. & Watson, J. E. M. A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions. Glob. Ecol. Conserv. 5, 12–21 (2016).

    Google Scholar 

  • 78.

    Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).

    PubMed 

    Google Scholar 

  • 79.

    IUCN. IUCN Red List of Threatened Species. Version 2021-1. (2021).

  • 80.

    IUCN. A global standard for the identification of Key Biodiversity Areas. Version 1.0. (IUCN, Gland, 2016).

  • 81.

    Crooks, K. R., Burdett, C. L., Theobald, D. M., Rondinini, C. & Boitani, L. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philos. Trans. R. Soc. B Biol. Sci. 366, 2642–2651 (2011).

    Google Scholar 

  • 82.

    Ripple, W. J., Bradshaw, G. A. & Spies, T. A. Measuring forest landscape patterns in the cascade range of Oregon, USA. Biol. Conserv. 57, 73–88 (1991).

    Google Scholar 

  • 83.

    Li, B.-L. & Archer, S. Weighted mean patch size: a robust index for quantifying landscape structure. Ecol. Model. 102, 353–361 (1997).

    Google Scholar 

  • 84.

    Di Marco, M., Rondinini, C., Boitani, L. & Murray, K. A. Comparing multiple species distribution proxies and different quantifications of the human footprint map, implications for conservation. Biol. Conserv. 165, 203–211 (2013).

    Google Scholar 

  • 85.

    IUCN. IUCN Red List of Threatened Species. Version 2012-1. (2012).

  • 86.

    Cutler, D. R. et al. Random forests for Classification in ecology. Ecology 88, 2783–2792 (2007).

    PubMed 

    Google Scholar 

  • 87.

    Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. The scaling of animal space use. Science 306, 266–268 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 88.

    McNab, B. K. The influence of food habits on the energetics of eutherian mammals. Ecol. Monogr. 56, 1–19 (1986).

    Google Scholar 

  • 89.

    Tucker, M. A., Ord, T. J. & Rogers, T. L. Evolutionary predictors of mammalian home range size: body mass, diet and the environment. Glob. Ecol. Biogeogr. 23, 1105–1114 (2014).

    Google Scholar 

  • 90.

    Murphy, M. A., Evans, J. S. & Storfer, A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91, 252–261 (2010).

    PubMed 

    Google Scholar 

  • 91.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Google Scholar 

  • 92.

    Cohen, J. Statistical Power Analysis for the Behavioral Sciences. (Academic Press, 1988).

  • 93.

    ESRI. ArcGIS Pro version 2.8.2, https://www.esri.com/en-us/home (2021).

  • 94.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2017).

  • 95.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 96.

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Google Scholar 

  • 97.

    Molnar, C. & Schratz, P. iml: Interpretable Machine Learning. R package version 0.10.1, https://CRAN.R-project.org/package=iml (2020).

  • 98.

    Torchiano, M. effsize: Efficient Effect Size Computation. R package version 0.8.1, https://CRAN.R-project.org/package=effsize (2020).

  • 99.

    Chamberlain, S. rredlist: ‘IUCN’ Red List Client. R package version 0.7.0, https://CRAN.R-project.org/package=rredlist (2020).

  • 100.

    Smith, F. A. et al. Body mass of late Quaternary mammals. Ecology 84, 3403–3403 (2003).

    Google Scholar 

  • 101.

    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).

    Google Scholar 

  • 102.

    Tacutu, R. et al. Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 103.

    Verde Arregoitia, L. D., Blomberg, S. P. & Fisher, D. O. Phylogenetic correlates of extinction risk in mammals: species in older lineages are not at greater risk. Proc. R. Soc. B Biol. Sci. 280, 20131092 (2013).

    Google Scholar 

  • 104.

    Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).

    PubMed 

    Google Scholar 

  • 105.

    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    Google Scholar 

  • 106.

    Kissling, W. D. et al. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecol. Evol. 4, 2913–2930 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Preparing global online learners for the clean energy transition

    Energizing communities in Africa