in

Arctic warming-induced cold damage to East Asian terrestrial ecosystems

  • 1.

    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).

    CAS 

    Google Scholar 

  • 2.

    Arrhenius, S. On the influence of carbonic acid in the air upon the temperature of the ground. London, Edinburgh, Dublin Phil. Mag. J. Sci 41, 237–276 (1896).

    CAS 

    Google Scholar 

  • 3.

    Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    CAS 

    Google Scholar 

  • 4.

    Bhatt, U. S. et al. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Intract 14, 1–20 (2010).

    Google Scholar 

  • 5.

    Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, L06801 (2012).

    Google Scholar 

  • 6.

    Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    CAS 

    Google Scholar 

  • 7.

    Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572–576 (2017).

    CAS 

    Google Scholar 

  • 8.

    Kug, J. S. et al. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 8, 759–762 (2015).

    CAS 

    Google Scholar 

  • 9.

    Jeong, S. J., Medvigy, D., Shevliakova, E. & Malyshev, S. Uncertainties in terrestrial carbon budgets related to spring phenology. J. Geophys. Res. 117, G01030 (2012).

    Google Scholar 

  • 10.

    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Google Scholar 

  • 11.

    Piao, S. L. et al. The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences 9, 3571–3586 (2012).

    CAS 

    Google Scholar 

  • 12.

    Mori, M., Watanabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873 (2014).

    CAS 

    Google Scholar 

  • 13.

    Takaya, K. & Nakamura, H. Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci 62, 4423–4440 (2005).

    Google Scholar 

  • 14.

    Honda, M., Inoue, J. & Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 36, L08707 (2009).

    Google Scholar 

  • 15.

    Piao, S. L. et al. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res. 108, D144401 (2003).

    Google Scholar 

  • 16.

    Hua, W. et al. Observational quantification of climatic and human influences on vegetation greening in China. Remote Sens 9, 425 (2017).

    Google Scholar 

  • 17.

    Zhou, B., Gu, L., Ding, Y. & Shao, L. The great 2008 Chinese ice storm: its socioeconomic–ecological impact and sustainability lessons learned. Bull. Am. Meteorol. Soc. 92, 47–60 (2011).

    Google Scholar 

  • 18.

    Shao, Q., Huang, L., Liu, J., Kuang, W. & Li, J. Analysis of forest damage caused by the snow and ice chaos along a transect across southern China in spring 2008. J. Geogr. Sci. 21, 219–234 (2011).

    Google Scholar 

  • 19.

    Wang, X., Huang, S., Li, J., Zhou, G. & Shi, L. Sprouting response of an evergreen broad‐leaved forest to a 2008 winter storm in Nanling Mountains, southern China. Ecosphere 7, e01395 (2016).

    Google Scholar 

  • 20.

    Woodward, F. I. & Williams, B. G. Climate and plant distribution at global and local scales. Vegetatio 69, 189–197 (1987).

    Google Scholar 

  • 21.

    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol 12, 1969–1976 (2006).

    Google Scholar 

  • 22.

    Piao, S. L., Fang, J. Y., Zhou, L. M., Ciais, P. & Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Change Biol 12, 672–685 (2006).

    Google Scholar 

  • 23.

    Cook, B. I., Wolkovich, E. M. & Parmesan, C. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Natl Acad. Sci. USA 109, 9000–9005 (2012).

    CAS 

    Google Scholar 

  • 24.

    Smith, B., Prentice, I. C. & Sykes, M. T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr 10, 621–637 (2001).

    Google Scholar 

  • 25.

    Zhu, D. et al. Improving the dynamics of Northern Hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model. Geosci. Model Dev. 8, 2263–2283 (2015).

    Google Scholar 

  • 26.

    Peano, D. et al. Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season. Biogeosciences 18, 2405–2428 (2021).

    Google Scholar 

  • 27.

    Zeng, N., Mariotti, A. & Wetzel, P. Terrestrial mechanisms of interannual CO2 variability. Glob. Biogeochem. Cycles 19, GB1016 (2005).

    Google Scholar 

  • 28.

    Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst 11, 4245–4287 (2019).

    Google Scholar 

  • 29.

    White, M. A., Thornton, P. E. & Running, S. W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 11, 217–234 (1997).

    CAS 

    Google Scholar 

  • 30.

    Chen, X. Q., Wang, L. X. & Inouye, D. Delayed response of spring phenology to global warming in subtropics and tropics. Agric. For. Meteorol. 234–235, 222–235 (2017).

    Google Scholar 

  • 31.

    Aono, Y. & Kazui, K. Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int. J. Climatol. 914, 905–914 (2008).

    Google Scholar 

  • 32.

    Pearse, W. D., Davis, C. C., Inouye, D. W., Primack, R. B. & Davies, T. J. A statistical estimator for determining the limits of contemporary and historic phenology. Nat. Ecol. Evol 1, 1876–1882 (2017).

    Google Scholar 

  • 33.

    Jang, Y. S., Kug, J. S. & Kim, B. M. How well do current climate models simulate the linkage between Arctic warming and extratropical cold winters? Clim. Dyn. 53, 4005–4018 (2019).

    Google Scholar 

  • 34.

    Park, H. & Jeong, S. J. Leaf area index in Earth system models: how the key variable of vegetation seasonality works in climate projections. Environ. Res. Lett. 16, 034027 (2021).

    Google Scholar 

  • 35.

    Alexeev, V. A., Esau, I. N., Polyakov, I. V., Byam, S. J. & Sorokina, S. Vertical structure of recent Arctic warming from observed data and reanalysis products. Climatic Change 111, 215–239 (2011).

    Google Scholar 

  • 36.

    Hänninen, H. Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiol 26, 889–898 (2006).

    Google Scholar 

  • 37.

    Augspurger, C. K. Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Funct. Ecol. 23, 1031–1039 (2009).

    Google Scholar 

  • 38.

    Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).

    Google Scholar 

  • 39.

    Ichii, K. et al. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. J. Geophys. Res. Biogeosci. 122, 767–795 (2017).

    CAS 

    Google Scholar 

  • 40.

    Li, X. & Xiao, J. A global, 0.05‐degree product of solar‐induced chlorophyll fluorescence derived from OCO‐2, MODIS, and reanalysis data. Remote Sens 11, 517 (2019).

    Google Scholar 

  • 41.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    Google Scholar 

  • 42.

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  • 43.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Google Scholar 

  • 44.

    Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI) 3g and fraction of photosynthetically active radiation (FPAR) 3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).

    Google Scholar 

  • 45.

    Bontemps, S. et al. Consistent global land cover maps for climate modeling communities: current achievements of the ESA’s land cover CCI. In ESA Living Planet Symp. 2013 CCI-4 (ESA, 2013).

  • 46.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  • 47.

    O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Google Scholar 

  • 48.

    Kim, H. Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions (Experiment 1) [Data set]. Data Integration and Analysis System (DIAS), https://doi.org/10.20783/DIAS.501 (2017).

  • 49.

    Zheng, F., Li, J., Ding, R. & Feng, J. Cross-Seasonal Influence of the SAM on Southern Hemisphere Extratropical SST and its Relationship with Meridional Circulation in CMIP5 models. Int. J. Climatol. 38, 1499–1519 (2018).

    Google Scholar 

  • 50.

    Livezey, R. E. & Chen, W. Y. Statistical field significance and its determination by Monte Carlo techniques. Month. Weath. Rev 111, 46–59 (1983).

    Google Scholar 

  • 51.

    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    CAS 

    Google Scholar 

  • 52.

    Kim, J. S., Kug, J. S. & Jeong, S. J. Intensification of terrestrial carbon cycle related to El Nino-Southern Oscillation under greenhouse warming. Nat. Commun. 8, 1674 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    Preparing global online learners for the clean energy transition

    Energizing communities in Africa