in

Ecological niche modeling predicting the potential distribution of African horse sickness virus from 2020 to 2060

  • 1.

    MacLachlan, N. J. & Guthrie, A. J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. 41, 35 (2010).

    Article 

    Google Scholar 

  • 2.

    Zientara, S., Weyer, C. T. & Lecollinet, S. African horse sickness. OIE Revue Sci. Tech. 34, 315–327 (2015).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Ayelet, G. et al. Outbreak investigation and molecular characterization of African horse sickness virus circulating in selected areas of Ethiopia. Acta Trop. 127, 91–96 (2013).

    Article 

    Google Scholar 

  • 4.

    Diarra, M. et al. Spatial distribution modelling of Culicoides (Diptera: Ceratopogonidae) biting midges, potential vectors of African horse sickness and bluetongue viruses in Senegal. Parasit. Vectors 11, 1–15 (2018).

    Article 

    Google Scholar 

  • 5.

    Karamalla, S. T. et al. Sero-epidemioloical survey on African horse sickness virus among horses in Khartoum State, Central Sudan. BMC Vet. Res. 14, 1–6 (2018).

    Article 

    Google Scholar 

  • 6.

    Escobar, L. E. Ecological Niche modeling: An introduction for veterinarians and epidemiologists. Front. Vet. Sci. 7, 519059. https://doi.org/10.3389/fvets.2020.519059 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Okely, M., Anan, R., Gad-Allah, S. & Samy, A. M. Mapping the environmental suitability of etiological agent and tick vectors of Crimean-Congo hemorrhagic fever. Acta Trop. 203, 105319 (2020).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Chavy, A. et al. Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome. PLoS Negl. Trop. Diseases 13, e0007629 (2019).

    Article 

    Google Scholar 

  • 9.

    Sloyer, K. E. et al. Ecological niche modeling the potential geographic distribution of four Culicoides species of veterinary significance in Florida, USA. PLoS ONE 14, e0206648 (2019).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 11.

    Cao, Z., Jin, Y., Shen, T., Xu, F. & Li, Y. Risk factors and distribution for peste des petits ruminants (PPR) in Mainland China. Small Rumin. Res. 162, 12–16 (2018).

    Article 

    Google Scholar 

  • 12.

    Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).

    Article 

    Google Scholar 

  • 13.

    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling. undefined 37, 191–203 (2014).

    Google Scholar 

  • 14.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, (2020).

  • 15.

    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Article 

    Google Scholar 

  • 16.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    Article 

    Google Scholar 

  • 17.

    Uusitalo, R. et al. Predicting spatial patterns of sindbis virus (Sinv) infection risk in finland using vector, host and environmental data. Int. J. Environ. Res. Public Health 18, 7064 (2021).

    Article 

    Google Scholar 

  • 18.

    Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability (Switzerland) 12, 4508 (2020).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Phillips, S. B., Aneja, V. P., Kang, D. & Arya, S. P. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar 

  • 20.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).

    Article 

    Google Scholar 

  • 21.

    Hernández-Urcera, J., Murillo, F. J., Regueira, M., Cabanellas-Reboredo, M. & Planas, M. Preferential habitats prediction in syngnathids using species distribution models. Marine Environ. Res. 172, 105488 (2021).

    Article 

    Google Scholar 

  • 22.

    Smeraldo, S. et al. Generalists yet different: distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mammal Rev. 51, 571–584 (2021).

    Article 

    Google Scholar 

  • 23.

    Thomson, A. M. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    QGIS Development Team. QGIS Geographic Information System. Open-Source Geospatial Foundation Project. (2020).

  • 25.

    Ramirez-Reyes, C. et al. Embracing ensemble species distribution models to inform at-risk species status assessments. J. Fish Wildl. Manag. 12, 98–111 (2021).

    Article 

    Google Scholar 

  • 26.

    Stephenson, F. et al. Presence-only habitat suitability models for vulnerable marine ecosystem indicator taxa in the South Pacific have reached their predictive limit. ICES J. Mar. Sci. 78, 2830–2843 (2021).

    Article 

    Google Scholar 

  • 27.

    Zhu, G., Fan, J. & Peterson, A. T. Cautions in weighting individual ecological niche models in ensemble forecasting. Ecol. Modelling 448, 109502 (2021).

    Article 

    Google Scholar 

  • 28.

    Leta, S. et al. Modeling the global distribution of Culicoides imicola: an Ensemble approach. Sci. Rep. 9, 1–9 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Onyango, M. G. et al. Delineation of the population genetic structure of Culicoides imicola in East and South Africa. Parasit. Vectors 8, 660 (2015).

    Article 

    Google Scholar 

  • 30.

    Carpenter, S., Mellor, P. S., Fall, A. G., Garros, C. & Venter, G. J. African horse sickness virus: history. Transm. Curr. Status. 62, 343–358. https://doi.org/10.1146/annurev-ento-031616-035010 (2017).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Carpenter, S., Mellor, P. S., Fall, A. G., Garros, C. & Venter, G. J. African Horse Sickness Virus: History, Transmission, and Current Status. Annu. Rev. Entomol. 62, 343–358 (2017).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Fall, M. et al. Culicoides (Diptera: Ceratopogonidae) midges, the vectors of African horse sickness virus—a host/vector contact study in the Niayes area of Senegal. Parasit. Vectors 8, 1–13 (2015).

    Article 

    Google Scholar 

  • 33.

    Mellor, P. S. Epizootiology and vectors of African horse sickness virus. Comp. Immunol. Microbiol. Infect. Dis. 17, 287–296 (1994).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Wu, X., Lu, Y., Zhou, S., Chen, L. & Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 86, 14–23 (2016).

    Article 

    Google Scholar 

  • 35.

    Nosrat, C. et al. Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLOS Negl. Trop. Diseases 15, e0009182 (2021).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Abiodun, G. J., Maharaj, R., Witbooi, P. & Okosun, K. O. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar. J. 15, 1–15 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Energizing communities in Africa

    Reducing methane emissions at landfills