in

Behavioural traits of rainbow trout and brown trout may help explain their differing invasion success and impacts

  • 1.

    Holway, D. A. & Suarez, A. V. Animal behavior: An essential component of invasion biology. TREE 14, 328–330 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Chapple, D. G., Simmonds, S. M. & Wong, B. B. M. Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol. Evol. 27, 57–64 (2012).

    PubMed 

    Google Scholar 

  • 3.

    Weis, J. & Sol, D. Behaviour and the Invasion Process. in Biological Invasions and Animal Behaviour 5–116 (Cambridge University Press, 2016).

  • 4.

    Cote, J., Fogarty, S., Weinersmith, K., Brodin, T. & Sih, A. Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc. R. Soc. B Biol. Sci. 277, 1571–1579 (2010).

    Google Scholar 

  • 5.

    Myles-Gonzalez, E., Burness, G., Yavno, S., Rooke, A. & Fox, M. G. To boldly go where no goby has gone before: Boldness, dispersal tendency, and metabolism at the invasion front. Behav. Ecol. 26, 1083–1090 (2015).

    Google Scholar 

  • 6.

    Mutascio, H. E., Pittman, S. E. & Zollner, P. A. Investigating movement behavior of invasive Burmese pythons on a shy–bold continuum using individual-based modeling. Perspect. Ecol. Conserv. 15, 25–31 (2017).

    Google Scholar 

  • 7.

    Chuang, A. Living Life on the Edge: The Role of Invasion Processes in Shaping Personalities in a Non-Native Spider Species (The University of Tennessee, Knoxville, 2019). https://doi.org/10.1017/CBO9781107415324.004.

    Book 

    Google Scholar 

  • 8.

    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).

    PubMed 

    Google Scholar 

  • 9.

    Pintor, L. M., Sih, A. & Kerby, J. L. Behavioral correlations provide a mechanism for explaining high invader densities and increased impacts on native prey. Ecology 90, 581–587 (2009).

    PubMed 

    Google Scholar 

  • 10.

    Petren, K. & Case, T. J. An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77, 118–132 (1996).

    Google Scholar 

  • 11.

    Wright, T. F., Eberhard, J. R., Hobson, E. A., Avery, M. L. & Russello, M. A. Behavioral flexibility and species invasions: The adaptive flexibility hypothesis. Ethol. Ecol. Evol. 22, 393–404 (2010).

    Google Scholar 

  • 12.

    Dick, J. T. A. Role of behaviour in biological invasions and species distributions; lessons from interactions between the invasive Gammarus pulex and the native G. duebeni (Crustacea: Amphipoda). Contrib. Zool. 77, 91–98 (2008).

    Google Scholar 

  • 13.

    Dick, J. T. A. et al. Invader Relative Impact Potential: A new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54, 1259–1267 (2017).

    Google Scholar 

  • 14.

    Dick, J. T. A., Elwood, R. W. & Montgomery, W. I. The behavioural basis of a species replacement: differential aggresssion and predation between the introduced Gammarus pulex and the native G. duebeni celticus (Amphipoda). Behav. Ecol. Sociobiol. 37, 393–398 (1995).

    Google Scholar 

  • 15.

    Dick, J. T. A. et al. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biol. Invasions 15, 837–846 (2013).

    Google Scholar 

  • 16.

    Dick, J. T. A. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 16, 735–753 (2014).

    Google Scholar 

  • 17.

    Iacarella, J. C., Dick, J. T. A. & Ricciardi, A. A spatio-temporal contrast of the predatory impact of an invasive freshwater crustacean. Divers. Distrib. 21, 803–812 (2015).

    Google Scholar 

  • 18.

    Toscano, B. J. & Griffen, B. D. Trait-mediated functional responses: Predator behavioural type mediates prey consumption. J. Anim. Ecol. 83, 1469–1477 (2014).

    PubMed 

    Google Scholar 

  • 19.

    MacCrimmon, H. R. World distribution of rainbow trout (Salmo gairdneri): further observations. J. Fish. Res. Board Canada 28, 663–704 (1971).

    Google Scholar 

  • 20.

    MacCrimmon, H. R., Marshall, T. L. & Gots, B. L. World distribution of brown trout, Salmo trutta: further observations. J. Fish. Res. Board Canada 27, 811–818 (1970).

    Google Scholar 

  • 21.

    Crawford, S. S. & Muir, A. M. Global introductions of salmon and trout in the genus Oncorhynchus: 1870–2007. Rev. Fish Biol. Fish. 18, 313–344 (2008).

    Google Scholar 

  • 22.

    Crowl, T. A., Townsend, C. R. & Mcintosh, A. R. The impact of introduced brown and rainbow trout on native fish: The case of Australasia. Rev. Fish Biol. Fish. 241, 217–241 (1992).

    Google Scholar 

  • 23.

    Hasegawa, K. Invasions of rainbow trout and brown trout in Japan: A comparison of invasiveness and impact on native species. Ecol. Freshw. Fish 29, 419–428 (2020).

    Google Scholar 

  • 24.

    Cambray, J. A. The global impact of alien trout species—A review; with reference to their impact in South Africa. African J. Aquat. Sci. 28, 61–67 (2003).

    Google Scholar 

  • 25.

    Dunham, J. B., Wheeler, A. & Rosenberger, A. Assessing the consequences of nonnative trout in headwater ecosystems in western North America. Fisheries 29, 37–41 (2004).

    Google Scholar 

  • 26.

    Fausch, K. D., Taniguchi, Y., Nakano, S., Grossman, G. D. & Townsend, C. R. Flood disturbance regimes influence rainbow trout invasion success among five holarctic regions. Ecol. Appl. 11, 1438–1455 (2001).

    Google Scholar 

  • 27.

    Anderson, R. M. & Nehring, R. B. Effects of a catch-and-release regulation on a wild trout population in Colorado and its acceptance by Anglers. North Am. J. Fish. Manag. 4, 257–265 (1984).

    Google Scholar 

  • 28.

    Young, K. A. et al. A trial of two trouts: Comparing the impacts of rainbow and brown trout on a native galaxiid. Anim. Conserv. 13, 399–410 (2010).

    Google Scholar 

  • 29.

    Conrad, J. L., Weinersmith, K. L., Brodin, T., Saltz, J. B. & Sih, A. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Mowles, S. L., Cotton, P. A. & Briffa, M. Consistent crustaceans: The identification of stable behavioural syndromes in hermit crabs. Behav. Ecol. Sociobiol. 66, 1087–1094 (2012).

    Google Scholar 

  • 31.

    Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).

    PubMed 

    Google Scholar 

  • 32.

    Bell, A. M. Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus). J. Evol. Biol. 18, 464–473 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Bourne, G. R. & Sammons, A. J. Boldness, aggression and exploration: evidence for a behavioural syndrome in male pentamorphic livebearing fish, Poecilia parae. AACL Bioflux 1, 39–50 (2008).

    Google Scholar 

  • 34.

    Lukas, J. et al. Consistent behavioral syndrome across seasons in an invasive freshwater fish. Front. Ecol. Evol. 8, 466 (2021).

    ADS 

    Google Scholar 

  • 35.

    Gjedrem, T., Gjøen, H. M. & Gjerde, B. Genetic origin of Norwegian farmed Atlantic salmon. Aquaculture 98, 41–50 (1991).

    Google Scholar 

  • 36.

    Huntingford, F. & Adams, C. Behavioural syndromes in farmed fish: Implications for production and welfare. Behaviour 142, 1207–1221 (2005).

    Google Scholar 

  • 37.

    Alvarez, D. & Nicieza, A. G. Predator avoidance behaviour in wild and hatchery-reared brown trout : The role of experience and domestication. J. Fish Biol. 63, 1565–1577. https://doi.org/10.1046/j.1095-8649.2003.00267.x (2003).

    Article 

    Google Scholar 

  • 38.

    Geffroy, B. et al. Evolutionary dynamics in the anthropocene: Life history and intensity of human contact shape antipredator responses. PLoS Biol. 18, 1–17 (2020).

    Google Scholar 

  • 39.

    Lincoln, R. F. & Scott, A. P. Production of all-female triploid rainbow trout. Aquaculture 30, 375–380 (1983).

    Google Scholar 

  • 40.

    Maxime, V. The physiology of triploid fish: Current knowledge and comparisons with diploid fish. Fish Fish. 9, 67–78 (2008).

    Google Scholar 

  • 41.

    Chatterji, R., Longley, D., Sandford, D., Roberts, D. & Stubbing, D. Performance of stocked triploid and diploid brown trout and their effects on wild brown trout in UK rivers. (2008).

  • 42.

    Benfey, T. J. The physiology and behavior of triploid fishes. Rev. Fish. Sci. 7, 39–67 (1999).

    Google Scholar 

  • 43.

    Carter, C. G. et al. Food consumption, feeding behaviour, and growth of triploid and diploid Atlantic salmon, Salmo salar L., parr.. Can. J. Zool. 72, 609–617 (1994).

    Google Scholar 

  • 44.

    Weber, G. M., Hostuttler, M. A., Cleveland, B. M. & Leeds, T. D. Growth performance comparison of intercross-triploid, induced triploid, and diploid rainbow trout. Aquaculture 433, 85–93 (2014).

    Google Scholar 

  • 45.

    Øverli, Ø., Pottinger, T. G., Carrick, T. R., Øverli, E. & Winberg, S. Differences in behaviour between rainbow trout selected for high- and low-stress responsiveness. J. Exp. Biol. 205, 391–395 (2002).

    PubMed 

    Google Scholar 

  • 46.

    Sadoul, B., Leguen, I., Colson, V., Friggens, N. C. & Prunet, P. A multivariate analysis using physiology and behavior to characterize robustness in two isogenic lines of rainbow trout exposed to a confinement stress. Physiol. Behav. 140, 139–147 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Adriaenssens, B. & Johnsson, J. I. Learning and context-specific exploration behaviour in hatchery and wild brown trout. Appl. Anim. Behav. Sci. 132, 90–99 (2011).

    Google Scholar 

  • 48.

    Näslund, J. & Johnsson, J. I. State-dependent behavior and alternative behavioral strategies in brown trout (Salmo trutta L.) fry. Behav. Ecol. Sociobiol. 70, 2111–2125 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Mortensen, E. Density-dependent mortality of trout fry (Salmo trutta L.) and its relationship to the management of small streams. J. Fish Biol. 11, 613–617 (1977).

    Google Scholar 

  • 50.

    Armstrong, J. D. & Nislow, K. H. Critical habitat during the transition from maternal provisioning in freshwater fish, with emphasis on Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). J. Zool. 269, 403–413 (2006).

    Google Scholar 

  • 51.

    Walsh, R. N. & Cummins, R. A. The open-field test: A critical review. Psychol. Bull. 83, 482–504 (1976).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Adriaenssens, B. & Johnsson, J. I. Shy trout grow faster: Exploring links between personality and fitness-related traits in the wild. Behav. Ecol. 22, 135–143 (2010).

    Google Scholar 

  • 53.

    Sneddon, L. U. The bold and the shy: Individual differences in rainbow trout. J. Fish Biol. 62, 971–975 (2003).

    Google Scholar 

  • 54.

    Adriaenssens, B. Individual variation in behaviour: personality and performance of brown trout in the wild (University of Gothenburg, 2010).

  • 55.

    Elias, A., Thrower, F. & Nichols, K. M. Rainbow trout personality: Individual behavioural variation in juvenile Oncorhynchus mykiss. Behaviour 155, 205–230 (2018).

    Google Scholar 

  • 56.

    Dick, J. T. A. et al. Functional responses can unify invasion ecology. Biol. Invasions 19, 1667–1672 (2017).

    Google Scholar 

  • 57.

    Sloman, K. A., Metcalfe, N. B., Taylor, A. C. & Gilmour, K. M. Plasma cortisol concentrations before and after social stress in rainbow trout and brown trout. Physiol. Biochem. Zool. 74, 383–389 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Sadoul, B., Blumstein, D. T., Alfonso, S. & Geffroy, B. Human protection drives the emergence of a new coping style in animals. PLoS Biol. 19, 1–11 (2021).

    Google Scholar 

  • 59.

    Campbell, J. M., Carter, P. A., Wheeler, P. A. & Thorgaard, G. H. Aggressive behavior, brain size and domestication in clonal rainbow trout lines. Behav. Genet. 45, 245–254 (2015).

    PubMed 

    Google Scholar 

  • 60.

    Berejikian, B. A., Mathews, S. B. & Quinn, T. P. Effects of hatchery and wild ancestry and rearing environments on the development of agonistic behavior in steelhead trout (Oncorhynchus mykiss) fry. Can. J. Fish. Aquat. Sci. 53, 2004–2014 (1996).

    Google Scholar 

  • 61.

    Laverty, C. et al. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions 19, 1653–1665 (2017).

    Google Scholar 

  • 62.

    Alexander, M. E., Dick, J. T. A., Weyl, O. L. F., Robinson, T. B. & Richardson, D. M. Existing and emerging high impact invasive species are characterized by higher functional responses than natives. Biol. Lett. 10, 20130946 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Dickey, J. W. E., Cuthbert, R. N., Steffen, G. T., Dick, J. T. A. & Briski, E. Sea freshening may drive the ecological impacts of emerging and existing invasive non-native species. Divers. Distrib. 27, 144–156 (2021).

    Google Scholar 

  • 64.

    Sadler, J., Pankhurst, P. M. & King, H. R. High prevalence of skeletal deformity and reduced gill surface area in triploid Atlantic salmon (Salmo salar L.). Aquaculture 198, 369–386 (2001).

    Google Scholar 

  • 65.

    Benfey, T. J. & Biron, M. Acute stress response in triploid rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Aquaculture 184, 167–176 (2000).

    CAS 

    Google Scholar 

  • 66.

    Sadler, J., Pankhurst, N. W., Pankhurst, P. M. & King, H. Physiological stress responses to confinement in diploid and triploid Atlantic salmon. J. Fish Biol. 56, 506–518 (2000).

    Google Scholar 

  • 67.

    Berrebi, P., Splendiani, A., Palm, S. & Berna, R. Genetic diversity of domestic brown trout stocks in Europe. Aquaculture 544, 737043 (2021).

    CAS 

    Google Scholar 

  • 68.

    Gross, R., Lulla, P. & Paaver, T. Genetic variability and differentiation of rainbow trout (Oncorhynchus mykiss) strains in northern and Eastern Europe. Aquaculture 272, 139–146 (2007).

    Google Scholar 

  • 69.

    Whelan, K. Assessing and mitigating the impact of a major rainbow trout escape on the wild salmon and trout populations of the Mourne river system, Northern Ireland. (2017).

  • 70.

    Shelton, J. et al. Temperature mediates the impact of non-native rainbow trout on native freshwater fishes in South Africa’s Cape Fold Ecoregion. Biol. Invasions 20, 2927–2944 (2018).

    Google Scholar 

  • 71.

    Michelangeli, M. et al. Sex-dependent personality in two invasive species of mosquitofish. Biol. Invasions 22, 1353–1364 (2020).

    Google Scholar 

  • 72.

    Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Google Scholar 

  • 73.

    R Core Team. R: A language and environment for statistical computing. (2018).

  • 74.

    RStudio Team. RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/. 2019 (2020).

  • 75.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Springer https://doi.org/10.1086/648138 (2008).

    Article 
    MATH 

    Google Scholar 

  • 76.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 18637 (2015).

    Google Scholar 

  • 77.

    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version. Media https://doi.org/10.1007/978-0-387-98141-3 (2019).

    Article 

    Google Scholar 

  • 78.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    MATH 

    Google Scholar 

  • 79.

    Barton, K. MuMIn: Multi-Model Inference. 2020 (2020).

  • 80.

    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: estimated marginal means, aka least-squares means. R package version 1.5.2-1 (2020).

  • 81.

    Pritchard, D. frair: tools for functional response analysis. R package version 0.0.100 (2017).

  • 82.

    Juliano, S. A. Predation and functional response curves. in Design and Analysis of Ecological Experiments (eds. Scheiner, S. & Gurevitch, J.) Chapter 10 (2001).

  • 83.

    Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369–383 (1972).

    Google Scholar 

  • 84.

    Bolker, B. M. Rogers random predator equation: extensions and estimation by numerical integration. 1–20 (2012).


  • Source: Ecology - nature.com

    Energizing communities in Africa

    Reducing methane emissions at landfills