in

Wave attenuation through forests under extreme conditions

  • 1.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Koch, E. W. et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7, 29–37 (2009).

    Article 

    Google Scholar 

  • 4.

    Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B. & Silliman, B. R. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim. Change https://doi.org/10.1007/s10584-010-0003-7 (2011).

    Article 

    Google Scholar 

  • 5.

    Zhu, Z. et al. Historic storms and the hidden value of coastal wetlands for nature-based flood defence. Nat. Sustain. 3, 1 (2020).

    Article 

    Google Scholar 

  • 6.

    Shepard, C. C., Crain, C. M. & Beck, M. W. The protective role of coastal marshes: A systematic review and meta-analysis. Plos One 6, e27374 (2011).

  • 7.

    Coops, H., Boeters, R. & Smit, H. Direct and indirect effects of wave attack on helophytes. Aquat. Bot. 41, 333–352 (1991).

    Article 

    Google Scholar 

  • 8.

    van Wesenbeeck, B. K. et al. Coastal and riverine ecosystems as adaptive flood defenses under a changing climate. Mitig. Adapt. Strateg. Glob. Chang. 22, 1–8 (2016).

    Google Scholar 

  • 9.

    Quartel, S., Kroon, A., Augustinus, P. G. E. F., Van Santen, P. & Tri, N. H. Wave attenuation in coastal mangroves in the Red River Delta Vietnam. J. Asian Earth Sci. 29, 576–584 (2007).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Bao, T. Q. Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia 53, 1 (2011).

    Google Scholar 

  • 11.

    Horstman, E. M. et al. Wave attenuation in mangroves: A quantitative approach to field observations. Coast. Eng. 94, 47–62 (2014).

    Article 

    Google Scholar 

  • 12.

    Dalrymple, R. A., Kirby, J. T. & Hwang, P. A. Wave diffraction due to areas of energy dissipation. J. Waterw. Ports Coast. Eng. 110, 67–69 (1984).

    Article 

    Google Scholar 

  • 13.

    Suzuki, T., Zijlema, M., Burger, B., Meijer, M. C. & Narayan, S. Wave dissipation by vegetation with layer schematization in SWAN. Coast. Eng. 59, 64–71 (2012).

    Article 

    Google Scholar 

  • 14.

    Maza, M., Lara, J. L. & Losada, I. Experimental analysis of wave attenuation and drag forces in a realistic fringe Rhizophora mangrove forest. Adv. Water Resour. 131, 1 (2019).

    Article 

    Google Scholar 

  • 15.

    Nepf, H. M. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35, 479–489 (1999).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Wolters, M. et al. Saltmarsh erosion and restoration in south-east England: squeezing the evidence requires realignment. J. Appl. Ecol. 42, 844–851 (2005).

    Article 

    Google Scholar 

  • 17.

    Vuik, V., Jonkman, S. N., Borsje, B. W. & Suzuki, T. Nature-based flood protection: The efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coast. Eng. 116, 42–56 (2016).

    Article 

    Google Scholar 

  • 18.

    Yang, S. L., Shi, B. W., Bouma, T. J., Ysebaert, T. & Luo, X. X. Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary. Estuaries Coasts 35, 169–182 (2012).

    Article 

    Google Scholar 

  • 19.

    Bouma, T. J. et al. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 86, 2187–2199 (2005).

    Article 

    Google Scholar 

  • 20.

    Bouma, T. J., De Vries, M. B. & Herman, P. M. J. Comparing ecosystem engineering efficiency of two plant species with contrasting growth strategies. Ecology 91, 2696–2704 (2010).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Ysebaert, T. et al. Wave attenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone. in Wetlands vol. 31 (2011).

  • 22.

    Granek, E. & Ruttenberg, B. I. Changes in biotic and abiotic processes following mangrove clearing. Estuar. Coast. Shelf Sci. 80, 555–562 (2008).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Mazda, Y., Magi, M., Ikeda, Y., Kurokawa, T. & Asano, T. Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetl. Ecol. Manag. 14, 365–378 (2006).

    Article 

    Google Scholar 

  • 24.

    IAHR Design Manual. in (eds. Frostick, L. E., McLelland, S. J. & Mercer, T. G.) (CRC Press/Balkema, 2011).

  • 25.

    Möller, I. et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 7, 727–731 (2014).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Booij, N., Ris, R. C. & Holthuijsen, L. H. A third-generation wave model for coastal regions: 1 Model description and validation. J. Geophys. Res. 104, 7649–7666 (1999).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Mendez, F. J. & Losada, I. J. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast. Eng. 51, 103–118 (2004).

    Article 

    Google Scholar 

  • 28.

    Järvelä, J. Determination of flow resistance caused by non-submerged woody vegetation. Int. J. River Basin Manag. 2, 61–70 (2004).

    Article 

    Google Scholar 

  • 29.

    Sumer, M. & Fredsøe, J. Book review hydrodynamics around cylindrical structures, B. M. Sumer and J. Fredsøe, World Scientific, Singapore. J. Fluids Struct. 12, 221–222 (1998).

  • 30.

    Mendez, F. J., Losada, I. J., Dalrymple, R. A. & Losada, M. A. Effects of wave reflection and dissipation on wave-induced second order magnitudes. in Coastal Engineering 1998, Vols 1–3 (ed. Edge, B. L.) 537–550 (1999).

  • 31.

    Jadhav, R. & Chen, Q. Field investigation of wave dissipation over salt marsh vegetation during tropical cyclone. (2012).

  • 32.

    Anderson, M. E. & Smith, J. M. Wave attenuation by flexible, idealized salt marsh vegetation. Coast. Eng. 83, 82 (2014).

    Article 

    Google Scholar 

  • 33.

    Möller, I. et al. Wave dissipation and transformation over coastal vegetation under extreme hydrodynamic loading. HYDRALAB IV Jt. user Meet. 1–6 (2014).

  • 34.

    Jadhav, R. S., Chen, Q. & Smith, J. M. Spectral distribution of wave energy dissipation by salt marsh vegetation. Coast. Eng. 77, 99 (2013).

    Article 

    Google Scholar 

  • 35.

    Ozeren, Y., Wren, D. G. & Wu, W. Experimental Investigation of Wave Attenuation through Model and Live Vegetation. J. Waterw. Port Coast. Ocean Eng. 140, 4019 (2014).

    Article 

    Google Scholar 

  • 36.

    He, F., Chen, J. & Jiang, C. Surface wave attenuation by vegetation with the stem, root and canopy. Coast. Eng. 152, 1 (2019).

    Article 

    Google Scholar 

  • 37.

    Keulegan, G. H. & Carpenter, L. H. Forces on cylinders and plates in an oscillating fluid. J. Res. Natl. Bur. Stand. 60, 1 (1958).

    Article 

    Google Scholar 

  • 38.

    Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J. & Bouwman, A. A framework for global river flood risk assessments. Hydrol. Earth Syst. Sci. 17, 1871–1892 (2013).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Sutton-Grier, A. E., Wowk, K. & Bamford, H. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 51, 137–148 (2015).

    Article 

    Google Scholar 

  • 40.

    Cheong, S. M. et al. Coastal adaptation with ecological engineering. Nat. Clim. Chang. 3, 787–791 (2013).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Wieselsberger, C. New data on the laws of fluid resistance /. (National Advisory Committee for Aeronautics, 1922).

  • 42.

    Borsje, B. W. et al. How ecological engineering can serve in coastal protection. Ecol. Eng. 37, 113–122 (2011).

    Article 

    Google Scholar 

  • 43.

    Massel, S. R. & Brinkman, R. M. On the determination of directional wave spectra for practical applications. Appl. Ocean Res. 20, 357–374 (1998).

    Article 

    Google Scholar 

  • 44.

    Klopman, G. & Meer, J. W. Random wave measurements in front of reflective structures. J. Waterw. Port Coast. Ocean Eng. 125, 39–45 (1999).

    Article 

    Google Scholar 

  • 45.

    Wuytack, T. et al. The potential of biomonitoring of air quality using leaf characteristics of white willow (Salix alba L.). Environ. Monit. Assess. 171, 197–204 (2010).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Reducing methane emissions at landfills

    Students dive into research with the MIT Climate and Sustainability Consortium