Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y. & Field, C. B. Nitrogen and climate change. Science 302, 1512–1513 (2003).
Google Scholar
Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).
Google Scholar
Sulman, B. N. et al. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).
Google Scholar
Wieder, W. R., Cleveland, C. C., Lawrence, D. M. & Bonan, G. B. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environ. Res. Lett. 10, 044016 (2015).
Shi, M., Fisher, J. B., Brzostek, E. R. & Phillips, R. P. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Glob. Change Biol. 22, 1299–1314 (2016).
Google Scholar
Meyerholt, J., Zaehle, S. & Smith, M. J. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation. Biogeosciences 13, 1491–1518 (2016).
Google Scholar
Fisher, J. B. et al. Carbon cost of plant nitrogen acquisition: a mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Glob. Biogeochem. Cycles 24, GB1014 (2010).
Wang, Y. P. & Houlton, B. Z. Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback. Geophys. Res. Lett. 36, L24403 (2009).
Houlton, B. Z., Wang, Y.-P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).
Google Scholar
Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).
Google Scholar
van Velzen, R., Doyle, J. J. & Geurts, R. A resurrected scenario: single gain and massive loss of nitrogen-fixing nodulation. Trends Plant Sci. 24, 49–57 (2018).
Google Scholar
Mills, B. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2018).
Google Scholar
Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 368, 20130164 (2013).
Rogers, A. et al. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol. 213, 22–42 (2017).
Google Scholar
Prévost, D., Antoun, H. & Bordeleau, L. M. Effects of low temperatures on nitrogenase activity in sainfoin (Onobrychis viciifolia) nodulated by Arctic rhizobia. FEMS Microbiol. Lett. 45, 205–210 (1987).
Google Scholar
Rainbird, R. M., Atkins, C. A. & Pate, J. S. Effect of temperature on nitrogenase functioning in cowpea nodules. Plant Physiol. 73, 392–394 (1983).
Google Scholar
Dalton, D. A. & Zobel, D. B. Ecological aspects of nitrogen fixation by Purshia tridentata. Plant Soil 48, 57–80 (1977).
Google Scholar
Waughman, G. J. The effect of temperature on nitrogenase activity. J. Exp. Bot. 28, 949–960 (1977).
Google Scholar
Wheeler, C. T. The causation of the diurnal changes in nitrogen fixation in the nodules of Alnus glutinosa. New Phytol. 70, 487–495 (1971).
Google Scholar
Schomberg, H. H. & Weaver, R. W. Nodulation, nitrogen fixation, and early growth of arrowleaf clover in response to root temperature and starter nitrogen. Agron. J. 84, 1046 (1992).
Google Scholar
Kou-Giesbrecht, S. & Menge, D. N. L. Nitrogen-fixing trees increase soil nitrous oxide emissions: a meta-analysis. Ecology 102, e03415 (2021).
Bytnerowicz, T. A., Min, E., Griffin, K. L. & Menge, D. N. L. Repeatable, continuous and real‐time estimates of coupled nitrogenase activity and carbon exchange at the whole‐plant scale. Methods Ecol. Evol. 10, 960–970 (2019).
Google Scholar
Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance. Ecology 95, 2236–2245 (2014).
Google Scholar
Staccone, A. et al. A spatially explicit, empirical estimate of tree-based biological nitrogen fixation in forests of the United States. Glob. Biogeochem. Cycles 32, e2019GB006241 (2020).
Cierjacks, A. et al. Biological flora of the British Isles: Robinia pseudoacacia. J. Ecol. 101, 1623–1640 (2013).
Google Scholar
Benson, D. R. & Dawson, J. O. Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol. Plant. 130, 318–330 (2007).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 222, 768–784 (2019).
Google Scholar
Heskel, M. A. et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl Acad. Sci. USA 113, 3832–3837 (2016).
Google Scholar
Kou-Giesbrecht, S. et al. A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF). Biogeosciences 18, 4143–4183 (2021).
Google Scholar
Hardy, R. W. F., Holsten, R. D., Jackson, E. K. & Burns, R. C. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43, 1185–1207 (1968).
Google Scholar
Cassar, N., Bellenger, J. P., Jackson, R. B., Karr, J. & Barnett, B. A. N2 fixation estimates in real-time by cavity ring-down laser absorption spectroscopy. Oecologia 168, 335–342 (2012).
Google Scholar
Taylor, B. N., Chazdon, R. L. & Menge, D. N. L. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, e02637 (2019).
Kok, B. A Critical Consideration of the Quantum Yield of Chlorella-Photosynthesis (W. Junk, 1948).
Liang, L. L. et al. Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration. Glob. Change Biol. 24, 1538–1547 (2018).
Google Scholar
Gunderson, C. A., O’hara, K. H., Campion, C. M., Walker, A. V. & Edwards, N. T. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Glob. Change Biol. 16, 2272–2286 (2010).
Google Scholar
Medlyn, B. E. et al. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 25, 1167–1179 (2002).
Google Scholar
Slot, M. & Winter, K. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. Plant Cell Environ. 40, 3055–3068 (2017).
Google Scholar
Murphy, B. K. & Stinziano, J. R. A derivation error that affects carbon balance models exists in the current implementation of the modified Arrhenius function. New Phytol. 6, 2371–2381 (2021).
Yan, W. & Hunt, L. A. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607–614 (1999).
Google Scholar
Farquhar, G. D. & Busch, F. A. Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model. New Phytol. 214, 570–584 (2017).
Google Scholar
Farquhar, G. D., Von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).
Google Scholar
Duursma, R. A. Plantecophys – an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10, e0143346 (2015).
Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. Jr & Long, S. P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24, 253–260 (2001).
Google Scholar
De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2016).
Google Scholar
Bolker, B. M. & R. Core Team. bbmle: Tools for General Maximum Likelihood Estimation (R Foundation for Statistical Computing, 2014).
Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
Google Scholar
Bolker, B. M. Ecological Models and Data in R (Princeton Univ. Press, 2008).
Venables, W. & Ripley, B. Modern Applied Statistics with S (Springer, 2002).
Bytnerowicz, T. A. tbytnero/Bytnerowicz-Akana-Griffin-Menge-N-fix-Temp: Bytnerowicz_Akana_Griffin_Menge_2022_Nature_Plants https://doi.org/10.5281/zenodo.5764790 (2021).
Source: Ecology - nature.com