in

Temperature sensitivity of woody nitrogen fixation across species and growing temperatures

  • 1.

    Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y. & Field, C. B. Nitrogen and climate change. Science 302, 1512–1513 (2003).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Sulman, B. N. et al. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Wieder, W. R., Cleveland, C. C., Lawrence, D. M. & Bonan, G. B. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environ. Res. Lett. 10, 044016 (2015).

  • 5.

    Shi, M., Fisher, J. B., Brzostek, E. R. & Phillips, R. P. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Glob. Change Biol. 22, 1299–1314 (2016).

    Article 

    Google Scholar 

  • 6.

    Meyerholt, J., Zaehle, S. & Smith, M. J. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation. Biogeosciences 13, 1491–1518 (2016).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Fisher, J. B. et al. Carbon cost of plant nitrogen acquisition: a mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Glob. Biogeochem. Cycles 24, GB1014 (2010).

  • 8.

    Wang, Y. P. & Houlton, B. Z. Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback. Geophys. Res. Lett. 36, L24403 (2009).

  • 9.

    Houlton, B. Z., Wang, Y.-P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    van Velzen, R., Doyle, J. J. & Geurts, R. A resurrected scenario: single gain and massive loss of nitrogen-fixing nodulation. Trends Plant Sci. 24, 49–57 (2018).

    Article 

    Google Scholar 

  • 12.

    Mills, B. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2018).

    Article 

    Google Scholar 

  • 13.

    Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 368, 20130164 (2013).

  • 14.

    Rogers, A. et al. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol. 213, 22–42 (2017).

    Article 

    Google Scholar 

  • 15.

    Prévost, D., Antoun, H. & Bordeleau, L. M. Effects of low temperatures on nitrogenase activity in sainfoin (Onobrychis viciifolia) nodulated by Arctic rhizobia. FEMS Microbiol. Lett. 45, 205–210 (1987).

    Article 

    Google Scholar 

  • 16.

    Rainbird, R. M., Atkins, C. A. & Pate, J. S. Effect of temperature on nitrogenase functioning in cowpea nodules. Plant Physiol. 73, 392–394 (1983).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Dalton, D. A. & Zobel, D. B. Ecological aspects of nitrogen fixation by Purshia tridentata. Plant Soil 48, 57–80 (1977).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Waughman, G. J. The effect of temperature on nitrogenase activity. J. Exp. Bot. 28, 949–960 (1977).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Wheeler, C. T. The causation of the diurnal changes in nitrogen fixation in the nodules of Alnus glutinosa. New Phytol. 70, 487–495 (1971).

    Article 

    Google Scholar 

  • 20.

    Schomberg, H. H. & Weaver, R. W. Nodulation, nitrogen fixation, and early growth of arrowleaf clover in response to root temperature and starter nitrogen. Agron. J. 84, 1046 (1992).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Kou-Giesbrecht, S. & Menge, D. N. L. Nitrogen-fixing trees increase soil nitrous oxide emissions: a meta-analysis. Ecology 102, e03415 (2021).

  • 22.

    Bytnerowicz, T. A., Min, E., Griffin, K. L. & Menge, D. N. L. Repeatable, continuous and real‐time estimates of coupled nitrogenase activity and carbon exchange at the whole‐plant scale. Methods Ecol. Evol. 10, 960–970 (2019).

    Article 

    Google Scholar 

  • 23.

    Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance. Ecology 95, 2236–2245 (2014).

    Article 

    Google Scholar 

  • 24.

    Staccone, A. et al. A spatially explicit, empirical estimate of tree-based biological nitrogen fixation in forests of the United States. Glob. Biogeochem. Cycles 32, e2019GB006241 (2020).

  • 25.

    Cierjacks, A. et al. Biological flora of the British Isles: Robinia pseudoacacia. J. Ecol. 101, 1623–1640 (2013).

    Article 

    Google Scholar 

  • 26.

    Benson, D. R. & Dawson, J. O. Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol. Plant. 130, 318–330 (2007).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 28.

    Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 222, 768–784 (2019).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Heskel, M. A. et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl Acad. Sci. USA 113, 3832–3837 (2016).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Kou-Giesbrecht, S. et al. A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF). Biogeosciences 18, 4143–4183 (2021).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Hardy, R. W. F., Holsten, R. D., Jackson, E. K. & Burns, R. C. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43, 1185–1207 (1968).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Cassar, N., Bellenger, J. P., Jackson, R. B., Karr, J. & Barnett, B. A. N2 fixation estimates in real-time by cavity ring-down laser absorption spectroscopy. Oecologia 168, 335–342 (2012).

    Article 

    Google Scholar 

  • 33.

    Taylor, B. N., Chazdon, R. L. & Menge, D. N. L. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, e02637 (2019).

  • 34.

    Kok, B. A Critical Consideration of the Quantum Yield of Chlorella-Photosynthesis (W. Junk, 1948).

  • 35.

    Liang, L. L. et al. Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration. Glob. Change Biol. 24, 1538–1547 (2018).

    Article 

    Google Scholar 

  • 36.

    Gunderson, C. A., O’hara, K. H., Campion, C. M., Walker, A. V. & Edwards, N. T. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Glob. Change Biol. 16, 2272–2286 (2010).

    Article 

    Google Scholar 

  • 37.

    Medlyn, B. E. et al. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 25, 1167–1179 (2002).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Slot, M. & Winter, K. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. Plant Cell Environ. 40, 3055–3068 (2017).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Murphy, B. K. & Stinziano, J. R. A derivation error that affects carbon balance models exists in the current implementation of the modified Arrhenius function. New Phytol. 6, 2371–2381 (2021).

  • 40.

    Yan, W. & Hunt, L. A. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607–614 (1999).

    Article 

    Google Scholar 

  • 41.

    Farquhar, G. D. & Busch, F. A. Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model. New Phytol. 214, 570–584 (2017).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Farquhar, G. D., Von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Duursma, R. A. Plantecophys – an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10, e0143346 (2015).

  • 44.

    Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. Jr & Long, S. P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24, 253–260 (2001).

    CAS 
    Article 

    Google Scholar 

  • 45.

    De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2016).

    Article 

    Google Scholar 

  • 46.

    Bolker, B. M. & R. Core Team. bbmle: Tools for General Maximum Likelihood Estimation (R Foundation for Statistical Computing, 2014).

  • 47.

    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).

    Article 

    Google Scholar 

  • 48.

    Bolker, B. M. Ecological Models and Data in R (Princeton Univ. Press, 2008).

  • 49.

    Venables, W. & Ripley, B. Modern Applied Statistics with S (Springer, 2002).

  • 50.

    Bytnerowicz, T. A. tbytnero/Bytnerowicz-Akana-Griffin-Menge-N-fix-Temp: Bytnerowicz_Akana_Griffin_Menge_2022_Nature_Plants https://doi.org/10.5281/zenodo.5764790 (2021).


  • Source: Ecology - nature.com

    Reducing methane emissions at landfills

    Students dive into research with the MIT Climate and Sustainability Consortium