in

Deciphering the multiple effects of climate warming on the temporal shift of leaf unfolding

  • 1.

    Arora, V. K. & Boer, G. J. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Change Biol. 11, 39–59 (2005).

    Google Scholar 

  • 2.

    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).

    Google Scholar 

  • 3.

    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).

    Google Scholar 

  • 4.

    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3227–3246 (2010).

    Google Scholar 

  • 5.

    Diez, J. M. et al. Forecasting phenology: from species variability to community patterns. Ecol. Lett. 15, 545–553 (2012).

    Google Scholar 

  • 6.

    Hegland, S. J., Nielsen, A., Lazaro, A., Bjerknes, A. L. & Totland, O. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184–195 (2009).

    Google Scholar 

  • 7.

    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    CAS 

    Google Scholar 

  • 8.

    Zhang, H., Yuan, W., Liu, S. & Dong, W. Divergent responses of leaf phenology to changing temperature among plant species and geographical regions. Ecosphere 6, art250 (2015).

    Google Scholar 

  • 9.

    Zhang, G., Zhang, Y., Dong, J. & Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl Acad. Sci. USA 110, 4309–4314 (2013).

    CAS 

    Google Scholar 

  • 10.

    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).

    Google Scholar 

  • 11.

    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).

    Google Scholar 

  • 12.

    Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).

    Google Scholar 

  • 13.

    Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. https://doi.org/10.1029/2007gl031447 (2007).

  • 14.

    Fitter, A. H. & Fitter, R. S. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).

    CAS 

    Google Scholar 

  • 15.

    Primack, R. B. et al. Spatial and interspecific variability in phenological responses to warming temperatures. Biol. Conserv. 142, 2569–2577 (2009).

    Google Scholar 

  • 16.

    Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A. & Field, C. B. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl Acad. Sci. USA 103, 13740–13744 (2006).

    CAS 

    Google Scholar 

  • 17.

    Wang, H., Dai, J., Zheng, J. & Ge, Q. Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850 to 2009. Int. J. Climatol. 35, 913–922 (2015).

    Google Scholar 

  • 18.

    Chuine, I. M., Morin, X. & Bugmann, H. Warming, photoperiods, and tree phenology. Science 329, 277–278 (2010).

    Google Scholar 

  • 19.

    Chuine, I. A unified model for budburst of trees. J. Theor. Biol. 207, 337–347 (2000).

    CAS 

    Google Scholar 

  • 20.

    Murray, M., Cannell, M. G. R. & Smith, R. I. Date of budburst of fifteen tree species in Britain following climatic warming. J. Appl. Ecol. 26, 693–700 (1989).

    Google Scholar 

  • 21.

    Man, R., Lu, P. & Dang, Q. L. Insufficient chilling effects vary among boreal tree species and chilling duration. Front. Plant Sci. 8, 1354 (2017).

    Google Scholar 

  • 22.

    Cannell, M. G. R. & Smith, R. I. L. Thermal time, chill days and prediction of budburst in Picea sitchensis. J. Appl. Ecol. 20, 951–963 (1983).

    Google Scholar 

  • 23.

    Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation. Glob. Change Biol. 21, 2687–2697 (2015).

    Google Scholar 

  • 24.

    Zhang, H., Liu, S., Regnier, P. & Yuan, W. New insights on plant phenological response to temperature revealed from long-term widespread observations in China. Glob. Change Biol. 24, 2066–2078 (2018).

    Google Scholar 

  • 25.

    Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).

    CAS 

    Google Scholar 

  • 26.

    Asse, D. et al. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agric. For. Meteorol. 252, 220–230 (2018).

    Google Scholar 

  • 27.

    Ettinger, A. K. et al. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Change 10, 1137–1142 (2020).

    Google Scholar 

  • 28.

    Chuine, I. & Régnière, J. Process-based models of phenology for plants and animals. Annu. Rev. Ecol. Evol. Syst. 48, 159–182 (2017).

    Google Scholar 

  • 29.

    Caffarra, A., Donnelly, A., Chuine, I. & Jones, M. B. Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model. Clim. Res. 46, 147–157 (2011).

    Google Scholar 

  • 30.

    Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).

    CAS 

    Google Scholar 

  • 31.

    Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 32.

    Fu, Y. H. et al. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 25, 2410–2418 (2019).

    Google Scholar 

  • 33.

    Wolkovich, E. M. et al. A simple explanation for declining temperature sensitivity with warming. Glob. Change Biol. 27, 4947–4949 (2021).

    CAS 

    Google Scholar 

  • 34.

    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).

    Google Scholar 

  • 35.

    Kramer, K. Selecting a model to predict the onset of growth of Fagus sylvatica. J. Appl. Ecol. 31, 172–181 (1994).

    Google Scholar 

  • 36.

    Chuine, I., Cour, P. & Rousseau, D.-D. Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ. 22, 1–13 (1999).

  • 37.

    Savas, R. Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy https://eurekamag.com/research/000/414/000414639.php (1974).

  • 38.

    Hänninen, H. Modelling bud dormancy release in trees from cool and temperate regions. Acta. Fenn. 14, 499–454 (1990).

    Google Scholar 

  • 39.

    Harrington, C. A., Gould, P. J. & St. Clair, J. B. Modeling the effects of winter environment on dormancy release of Douglas-fir. Ecol. Manag. 259, 798–808 (2010).

    Google Scholar 

  • 40.

    Zhang, H., Yuan, W., Liu, S., Dong, W. & Fu, Y. Sensitivity of flowering phenology to changing temperature in China. J. Geophys. Res. Biogeosci. 120, 1658–1665 (2015).

    Google Scholar 

  • 41.

    Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–331 (2009).

    CAS 

    Google Scholar 

  • 42.

    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    Google Scholar 

  • 43.

    Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).

    Google Scholar 

  • 44.

    Zohner, C. M. & Renner, S. S. Common garden comparison of the leaf-out phenology of woody species from different native climates, combined with herbarium records, forecasts long-term change. Ecol. Lett. 17, 1016–1025 (2014).

    Google Scholar 

  • 45.

    Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res. 132, 1–8 (2012).

    Google Scholar 

  • 46.

    Lenz, A., Hoch, G., Körner, C. & Vitasse, Y. Convergence of leaf-out towards minimum risk of freezing damage in temperate trees. Funct. Ecol. 30, 1480–1490 (2016).

    Google Scholar 

  • 47.

    Wang, Y. et al. Forest controls spring phenology of juvenile Smith fir along elevational gradients on the southeastern Tibetan Plateau. Int. J. Biometeorol. 63, 963–972 (2019).

    Google Scholar 

  • 48.

    Marquis, B., Bergeron, Y., Simard, M. & Tremblay, F. Probability of sping frosts, not growing degree-days, drives onset of spruce bud burst in plantations at the boreal-temperate forest ecotone. Front. Plant Sci. 11, 1031 (2020).

    Google Scholar 

  • 49.

    Shen, M., Piao, S., Cong, N., Zhang, G. & Jassens, I. A. Precipitation impacts on vegetation spring phenology on the Tiberan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).

    Google Scholar 

  • 50.

    Liu et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Change Biol. 22, 644–655 (2016).

    CAS 

    Google Scholar 

  • 51.

    Minder, J. R., Mote, P. W. & Lundquist, J. D. Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains. J. Geophys. Res. 115, D14122 (2010).

    Google Scholar 

  • 52.

    Navarro-Serrano et al. Elevation effects on air temperature in a topographically complex mountain valley in the Spanish Pyrenees. Atmosphere 11, 656 (2020).

    Google Scholar 

  • 53.

    Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).

    CAS 

    Google Scholar 

  • 54.

    Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).

    Google Scholar 

  • 55.

    Beer, C. et al. Harmonized European long-term climate data for assessing the effect of changing temporal variability on land–atmosphere CO2 fluxes. J. Clim. 27, 4815–4834 (2014).

    Google Scholar 

  • 56.

    Olsson, C. & Jönsson, A. M. Process-based models not always better than empirical models for simulating budburst of Norway spruce and birch in Europe. Glob. Change Biol. 20, 3492–3507 (2014).

    Google Scholar 

  • 57.

    Duan, Q., Sorooshian, S. & Gupta, V. K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 158, 265–284 (1994).

    Google Scholar 

  • 58.

    Bluemel, K. & Chmielewski, F. Shortcomings of classical phenological forcing models and a way to overcome them. Agric. For. Meteorol. 164, 10–19 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Reducing methane emissions at landfills

    Students dive into research with the MIT Climate and Sustainability Consortium