in

Global mapping reveals increase in lacustrine algal blooms over the past decade

  • 1.

    Brooks, B. W. et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 35, 6–13 (2016).

    Google Scholar 

  • 2.

    Lopez, C., Jewett, E., Dortch, Q., Walton, B. & Hudnell, H. Scientific Assessment of Freshwater Harmful Algal Blooms (United States National Ocean Service, 2008)

  • 3.

    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).

    Google Scholar 

  • 4.

    Paerl, H. W. & Paul, V. J. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012).

    Google Scholar 

  • 5.

    Carmichael, W. W. The toxins of cyanobacteria. Sci. Am. 270, 78–86 (1994).

    Google Scholar 

  • 6.

    Carmichael, W. W. et al. Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ. Health Persp. 109, 663–668 (2001).

    Google Scholar 

  • 7.

    Botswana: mystery elephant deaths caused by cyanobacteria. BBC News https://www.bbc.com/news/world-africa-54234396 (2020).

  • 8.

    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).

    Google Scholar 

  • 9.

    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).

    Google Scholar 

  • 10.

    Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 49, 2179–2189 (2004).

    Google Scholar 

  • 11.

    Kutser, T., Metsamaa, L., Strömbeck, N. & Vahtmäe, E. Monitoring cyanobacterial blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 67, 303–312 (2006).

    Google Scholar 

  • 12.

    Binding, C. E., Pizzolato, L. & Zeng, C. EOLakeWatch; delivering a comprehensive suite of remote sensing algal bloom indices for enhanced monitoring of Canadian eutrophic lakes. Ecol. Indic. 121, 106999 (2021).

    Google Scholar 

  • 13.

    Stumpf, R. P. et al. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae 54, 160–173 (2016).

    Google Scholar 

  • 14.

    Matthews, M. W. Eutrophication and cyanobacterial blooms in South African inland waters: 10 years of MERIS observations. Remote Sens. Environ. 155, 161–177 (2014).

    Google Scholar 

  • 15.

    Mishra, S. et al. Measurement of cyanobacterial bloom magnitude using satellite remote sensing. Sci. Rep. 9, 18310 (2019).

    Google Scholar 

  • 16.

    Hu, C. et al. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. 115, C04002 (2010).

    Google Scholar 

  • 17.

    Song, K. et al. Climatic versus anthropogenic controls of decadal trends (1983–2017) in algal blooms in lakes and reservoirs across China. Environ. Sci. Technol. 55, 2929–2938 (2021).

    Google Scholar 

  • 18.

    Coffer, M. M., Schaeffer, B. A., Darling, J. A., Urquhart, E. A. & Salls, W. B. Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing. Ecol. Indic. 111, 105976 (2020).

    Google Scholar 

  • 19.

    Ho, J., Michalak, A. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).

    Google Scholar 

  • 20.

    Dierssen, H. M., Kudela, R. M., Ryan, J. P. & Zimmerman, R. C. Red and black tides: quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnol. Oceanogr. 51, 2646–2659 (2006).

    Google Scholar 

  • 21.

    Michalak, A. M. et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl Acad. Sci. USA 110, 6448–6452 (2013).

    Google Scholar 

  • 22.

    Binding, C., Greenberg, T., McCullough, G., Watson, S. & Page, E. An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. J. Great Lakes Res. 44, 436–446 (2018).

    Google Scholar 

  • 23.

    Guo, L. Doing battle with the green monster of Taihu Lake. Science 317, 1166–1166 (2007).

    Google Scholar 

  • 24.

    Moradi, M. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea. Mar. Pollut. Bull. 87, 311–322 (2014).

    Google Scholar 

  • 25.

    Schindler, D. W. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184, 897–899 (1974).

    Google Scholar 

  • 26.

    Qin, B. et al. Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environ. Sci. Technol. 54, 3191–3198 (2020).

    Google Scholar 

  • 27.

    Beman, J. M., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005).

    Google Scholar 

  • 28.

    Yu, C. et al. Managing nitrogen to restore water quality in China. Nature 567, 516–520 (2019).

    Google Scholar 

  • 29.

    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Google Scholar 

  • 30.

    Hobbie, S. E. et al. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl Acad. Sci. USA 114, 4177–4182 (2017).

    Google Scholar 

  • 31.

    Wang, Z. China’s wastewater treatment goals. Science 338, 604–604 (2012).

    Google Scholar 

  • 32.

    Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011).

  • 33.

    Litke, D. W. Review of Phosphorus Control Measures in the United States and Their Effects on Water Quality (US Geological Survey, 1999).

  • 34.

    Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Change Biol. 18, 118–126 (2012).

    Google Scholar 

  • 35.

    Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P. & Brookes, J. D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46, 1394–1407 (2012).

    Google Scholar 

  • 36.

    Wells, M. L. et al. Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49, 68–93 (2015).

    Google Scholar 

  • 37.

    Elliott, J. A. The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob. Change Biol 16, 864–876 (2010).

    Google Scholar 

  • 38.

    Jeppesen, E. et al. in Shallow Lakes ’95 (eds Kufel, L. et al.) 151–164 (Springer, 1997).

  • 39.

    O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 773–710,781 (2015).

    Google Scholar 

  • 40.

    Janssen, A. B. G. et al. How to model algal blooms in any lake on earth. Curr. Opin. Environ. Sustain 36, 1–10 (2019).

    Google Scholar 

  • 41.

    Woodcock, C. E. et al. Free access to Landsat imagery. Science 320, 1011 (2008).

    Google Scholar 

  • 42.

    Zhu, Z. & Woodcock, C. E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 118, 83–94 (2012).

    Google Scholar 

  • 43.

    Masek, J. G. et al. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 3, 68–72 (2006).

    Google Scholar 

  • 44.

    Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016).

    Google Scholar 

  • 45.

    Irish, R. R. Landsat 7 Science Data Users Handbook 415–430 (US Geological Survey, 2000).

  • 46.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    Google Scholar 

  • 47.

    Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).

    Google Scholar 

  • 48.

    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Google Scholar 

  • 49.

    McNally, A. et al. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 4, 170012 (2017).

    Google Scholar 

  • 50.

    CIESIN Gridded Population of the World v.4 (NASA SEDAC, 2018).

  • 51.

    Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).

    Google Scholar 

  • 52.

    Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).

    Google Scholar 

  • 53.

    Feng, L. & Hu, C. Land adjacency effects on MODIS Aqua top-of-atmosphere radiance in the shortwave infrared: statistical assessment and correction. J. Geophys. Res. Oceans 122, 4802–4818 (2017).

    Google Scholar 

  • 54.

    Walsh, S. E. et al. Global patterns of lake ice phenology and climate: model simulations and observations. J. Geophys. Res. Atmos. 103, 28825–28837 (1998).

    Google Scholar 

  • 55.

    Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).

    Google Scholar 

  • 56.

    Hu, C. et al. Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past. Appl. Opt. 51, 6045–6062 (2012).

    Google Scholar 

  • 57.

    Kuhn, C. & Butman, D. Declining greenness in Arctic-boreal lakes. Proc. Natl Acad. Sci. USA 118, e2021219118 (2021).

    Google Scholar 

  • 58.

    Kirillin, G. et al. Physics of seasonally ice-covered lakes: a review. Aquat. Sci. 74, 659–682 (2012).

    Google Scholar 

  • 59.

    Kotovirta, V., Toivanen, T., Järvinen, M., Lindholm, M. & Kallio, K. Participatory surface algal bloom monitoring in Finland in 2011–2013. Environ. Syst. Res. 3, 24 (2014).

    Google Scholar 

  • 60.

    Cronberg, G., Annadotter, H. & Lawton, L. A. The occurrence of toxic blue-green algae in Lake Ringsjön, southern Sweden, despite nutrient reduction and fish biomanipulation. Hydrobiologia 404, 123–129 (1999).

    Google Scholar 

  • 61.

    Romarheim, A. T. & Riise, G. Development of Cyanobacteria in Årungen (Norsk vannforening, 2009)

  • 62.

    Robertson, A. R. The CIE 1976 color‐difference formulae. Color Res. Appl. 2, 7–11 (1977).

    Google Scholar 

  • 63.

    Mouw, C. B. et al. Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. Remote Sens. Environ. 160, 15–30 (2015).

    Google Scholar 

  • 64.

    Wasmund, N., Nausch, G. & Matthäus, W. Phytoplankton spring blooms in the southern Baltic Sea—spatio-temporal development and long-term trends. J. Plankton Res. 20, 1099–1117 (1998).

    Google Scholar 

  • 65.

    Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 113, 2118–2129 (2009).

    Google Scholar 

  • 66.

    Fairman, H. S., Brill, M. H. & Hemmendinger, H. How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Res. Appl. 22, 11–23 (1997).

    Google Scholar 

  • 67.

    Chander, G., Markham, B. L. & Helder, D. L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 113, 893–903 (2009).

    Google Scholar 

  • 68.

    Feng, L. et al. Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: a solution for large view angle associated problems. Remote Sens. Environ. 174, 56–68 (2016).

    Google Scholar 

  • 69.

    Yu, X. et al. An empirical algorithm to seamlessly retrieve the concentration of suspended particulate matter from water color across ocean to turbid river mouths. Remote Sens. Environ. 235, 111491 (2019).

    Google Scholar 

  • 70.

    Hou, X., Feng, L., Chen, X. & Zhang, Y. Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes. ISPRS J. Photogramm. Remote Sens. 141, 148–160 (2018).

    Google Scholar 

  • 71.

    Lee, Z., Pahlevan, N., Ahn, Y.-H., Greb, S. & O’Donnell, D. Robust approach to directly measuring water-leaving radiance in the field. Appl. Opt. 52, 1693–1701 (2013).

    Google Scholar 

  • 72.

    Liu, L., Peng, W., Wu, L. & Liu, L. Water quality assessment of Danjiangkou Reservoir and its tributaries in China. IOP Conf. Ser. Earth Environ. Sci. 112, 012008 (2018).

    Google Scholar 

  • 73.

    Li, X. et al. The color formation mechanism of the blue karst lakes in Jiuzhaigou Nature Reserve, Sichuan, China. Water 12, 771 (2020).

    Google Scholar 

  • 74.

    Wurtsbaugh, W. & Marcarelli, A. Eutrophication in Farmington Bay, Great Salt Lake, Utah 2005 Annual Report (Utah State Univ., 2006).

  • 75.

    Hammer, U. T. Saline Lake Ecosystems of the World Vol. 59 (Springer, 1986).


  • Source: Ecology - nature.com

    Reducing methane emissions at landfills

    Students dive into research with the MIT Climate and Sustainability Consortium