Dellwig O, Schnetger B, Brumsack H-J, Grossart H-P, Umlauf L. Dissolved reactive manganese at pelagic redoxclines (part II): hydrodynamic conditions for accumulation. J Mar Syst. 2012;90:31–41.
Taylor GT, Iabichella M, Ho T, Scranton MI, Thunell RC, Muller-Karger F, et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr. 2001;46:148–63.
Google Scholar
Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B. Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Mar Chem. 2001;74:29–51.
Google Scholar
Trefry JH, Presley BJ, Keeney-Kennicutt WL, Trocine RP. Distribution and chemistry of manganese, iron, and suspended particulates in Orca Basin. Geo-Mar Lett. 1984;4:125–30.
Dahl TW, Anbar AD, Gordon GW, Rosing MT, Frei R, Canfield DE. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochim Cosmochim Acta. 2010;74:144–63.
Google Scholar
Özsoy E, Ünlüata Ü. Oceanography of the Black Sea: a review of some recent results. Earth-Sci Rev. 1997;42:231–72.
Wegwerth A, Eckert S, Dellwig O, Schnetger B, Severmann S, Weyer S, et al. Redox evolution during Eemian and Holocene sapropel formation in the Black Sea. Palaeogeogr Palaeoclimatol Palaeoecol. 2018;489:249–60.
Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS, Top Z, et al. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature. 1989;338:411–3.
Google Scholar
Schulz-Vogt HN, Pollehne F, Jürgens K, Arz HW, Bahlo R, Dellwig O, et al. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. ISME J. 2019;13:1198–208.
Google Scholar
Dellwig O, Wegwerth A, Schnetger B, Schulz H, Arz HW. Dissimilar behaviors of the geochemical twins W and Mo in hypoxic-euxinic marine basins. Earth-Sci Rev. 2019;193:1–23.
Google Scholar
Stanev EV, Poulain PM, Grayek S, Johnson KS, Claustre H, Murray JW. Understanding the dynamics of the oxic-anoxic interface in the Black Sea. Geophys Res Lett. 2018;45:864–71.
Google Scholar
Trouwborst RE. Soluble Mn(III) in suboxic zones. Science. 2006;313:1955–7.
Google Scholar
Vliet DM, Meijenfeldt FAB, Dutilh BE, Villanueva L, Sinninghe Damsté JS, Stams AJM, et al. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol. 2021;23:2834–57.
Google Scholar
Konovalov SK, Luther GW, Friederich GE, Nuzzio DB, Tebo BM, Murray JW, et al. Lateral injection of oxygen with the Bosporus plume-fingers of oxidizing potential in the Black Sea. Limnol Oceanogr. 2003;48:2369–76.
Google Scholar
Lewis BL, Landing WM. The biogeochemistry of manganese and iron in the Black Sea. Deep Sea Res A Oceanogr Res Pap. 1991;38:S773–S803.
Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Umlauf L. Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem. 2007;107:388–410.
Google Scholar
Gregg MC, Yakushev E. Surface ventilation of the Black Sea’s cold intermediate layer in the middle of the western gyre. Geophys Res Lett. 2005;32:1–4.
Schnetger B, Dellwig O. Dissolved reactive manganese at pelagic redoxclines (part I): a method for determination based on field experiments. J Mar Syst. 2012;90:23–30.
Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, et al. Biogenic manganese oxides: Properties and mechanisms of formation. Annu Rev Earth Planet Sci. 2004;32:287–328.
Google Scholar
Glockzin M, Pollehne F, Dellwig O. Stationary sinking velocity of authigenic manganese oxides at pelagic redoxclines. Mar Chem. 2014;160:67–74.
Google Scholar
Dellwig O, Leipe T, März C, Glockzin M, Pollehne F, Schnetger B, et al. A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins. Geochim Cosmochim Acta. 2010;74:7100–15.
Google Scholar
Burdige DJ, Nealson KH. Chemical and microbiological studies of sulfide-mediated manganese reduction. Geomicrobiol J. 1986;4:361–87.
Google Scholar
Yao W, Millero FJ. The rate of sulfide oxidation by δMnO2 in seawater. Geochim Cosmochim Acta. 1993;57:3359–65.
Google Scholar
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996.
Google Scholar
Henkel JV, Dellwig O, Pollehne F, Herlemann DPR, Leipe T, Schulz-Vogt HN. A bacterial isolate from the Black Sea oxidizes sulfide with manganese(IV) oxide. Proc Natl Acad Sci USA. 2019;116:12153–5.
Google Scholar
Henkel JV, Vogts A, Werner J, Neu TR, Spröer C, Bunk B, et al. Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst Appl Microbiol. 2021;44:1–11.
Grote J, Jost G, Labrenz M, Herndl GJ, Jürgens K. Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Appl Environ Microbiol. 2008;74:7546–51.
Google Scholar
Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.
Google Scholar
Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol. 2003;69:2928–35.
Google Scholar
Grote J, Labrenz M, Pfeiffer B, Jost G, Jürgens K. Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic Sea. Appl Environ Microbiol. 2007;73:7155–61.
Google Scholar
Daims H, Bruhl A, Amann R, Schleifer K, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.
Google Scholar
Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;11:136–43.
Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.
Google Scholar
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.
Google Scholar
Von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 2019;20:1–14.
Schulz HD. Conceptual models and computer models. In: Schulz HD, Zabel M, editors. Marine geochemistry. Springer: Berlin, Heidelberg; 2006. p. 513–47.
Diepenbroek M, Glöckner FO, Grobe P, Güntsch A, Huber R, König-Ries B, et al. Towards an integrated biodiversity and ecological research data management and archiving platform: the German federation for the curation of biological data (GFBio). In: Plödereder E, Grunske L, Schneider E, Ull D, editors. Informatik 2014. Bonn: Gesellschaft für Informatik e.V.; 2014.p. 1711–21.
Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol. 2011;29:415–20.
Google Scholar
Revsbech NP, Thamdrup B, Dalsgaard T, Canfield DE. Construction of STOX oxygen sensors and their application for determination of O2 concentrations in oxygen minimum zones. Methods Enzymol. 2011;486:325–41.
Google Scholar
Dahl C. A biochemical view on the biological sulfur cycle. In: Environmental technologies to treat sulphur pollution: principles and engineering. IWA Publishing: London; 2020;2:55–96.
Murray JW, Yakushev EV. Past and present water column anoxia. Past and present water column anoxia. Dordrecht: Springer Netherlands; 2006.
Schulz HD. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase. In: Schulz HD, Zabel M, editors. Marine geochemistry. Berlin/Heidelberg: Springer-Verlag; 2006. p. 73–124.
Tebo BM. Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep Res A. 1991;38:883–905.
Konovalov S, Samodurov A, Oguz T, Ivanov L. Parameterization of iron and manganese cycling in the Black Sea suboxic and anoxic environment. Deep Res Part I Oceanogr Res Pap. 2004;51:2027–45.
Google Scholar
Lahme S, Callbeck CM, Eland LE, Wipat A, Enning D, Head IM, et al. Comparison of sulfide-oxidizing Sulfurimonas strains reveals a new mode of thiosulfate formation in subsurface environments. Environ Microbiol. 2020;22:1784–1800.
Google Scholar
Grote J, Schott T, Bruckner CG, Glockner FO, Jost G, Teeling H, et al. Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proc Natl Acad Sci USA. 2012;109:506–10.
Google Scholar
Sievert SM, Scott KM, Klotz MG, Chain PSG, Hauser LJ, Hemp J, et al. Genome of the Epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Appl Environ Microbiol. 2008;74:1145–56.
Google Scholar
Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005;8:253–9.
Google Scholar
Götz F, Pjevac P, Markert S, McNichol J, Becher D, Schweder T, et al. Transcriptomic and proteomic insight into the mechanism of cyclooctasulfur- versus thiosulfate-oxidation by the chemolithoautotroph Sulfurimonas denitrificans. Environ Microbiol. 2019;21:244–58.
Google Scholar
Pjevac P, Meier DV, Markert S, Hentschker C, Schweder T, Becher D, et al. Metaproteogenomic profiling of microbial communities colonizing actively venting hydrothermal chimneys. Front Microbiol. 2018;9:1–12.
Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 2017;11:1545–58.
Google Scholar
Wang S, Jiang L, Hu Q, Liu X, Yang S, Shao Z. Elemental sulfur reduction by a deep‐sea hydrothermal vent Campylobacterium Sulfurimonas sp. NW10. Environ Microbiol. 2021;23:965–79.
Google Scholar
Yao W, Millero FH. Oxidation of hydrogen sulfide by Mn(IV) and Fe(III) (hydr)oxides in seawater. Mar Chem. 1996;52:1–16.
Google Scholar
Herszage J, dos Santos Afonso M. Mechanism of hydrogen sulfide oxidation by manganese(IV) oxide in aqueous solutions. Langmuir. 2003;19:9684–92.
Google Scholar
Glazer BT, Luther GW, Konovalov SK, Friederich GE, Nuzzio DB, Trouwborst RE, et al. Documenting the suboxic zone of the Black Sea via high-resolution real-time redox profiling. Deep Res II Top Stud Oceanogr. 2006;53:1740–55.
Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW. Sulfide oxidation in the anoxic Black Sea chemocline. Deep Sea Res A Oceanogr Res Pap. 1991;38:1083–103.
Yiǧiterhan O, Murray JW. Trace metal composition of particulate matter of the Danube River and Turkish rivers draining into the Black Sea. Mar Chem. 2008;111:63–76.
Brewer PG, Spencer DW. Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases: water. In: The Black Sea–Geology, Chemistry, and Biology. AAPG Special Volumes. AAPG; 1974;137–43.
Fuchsman CA, Kirkpatrick JB, Brazelton WJ, Murray JW, Staley JT. Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol Ecol. 2011;78:586–603.
Google Scholar
Kelly DP. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B Biol Sci. 1982;298:499–528.
Google Scholar
Kirkpatrick JB, Fuchsman CA, Yakushev EV, Egorov AV, Staley JT, Murray JW. Dark N2 fixation: nifH expression in the redoxcline of the Black Sea. Aquat Micro Ecol. 2018;82:43–58.
Glaubitz S, Kießlich K, Meeske C, Labrenz M, Jürgens K. SUP05 Dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central baltic and black seas. Appl Environ Microbiol. 2013;79:2767–76.
Google Scholar
Shah V, Chang BX, Morris RM. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME J. 2017;11:263–71.
Google Scholar
Rogge A, Vogts A, Voss M, Jürgens K, Jost G, Labrenz M. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r -strategists. Environ Microbiol. 2017;19:2495–506.
Google Scholar
Overmann J, Cypionka H, Pfennig N. An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr. 1992;37:150–5.
Google Scholar
Jensen MM, Kuypers MMM, Lavik G, Thamdrup B. Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnol Oceanogr. 2008;53:23–36.
Google Scholar
Hannig M, Lavik G, Kuypers MMM, Woebken D, Martens-Habbena W, Jürgens K. Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnol Oceanogr. 2007;52:1336–45.
Google Scholar
Engström P, Dalsgaard T, Hulth S, Aller RC. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta. 2005;69:2057–65.
Dapena-Mora A, Fernández I, Campos JL, Mosquera-Corral A, Méndez R, Jetten MSM. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzym Micro Technol. 2007;40:859–65.
Google Scholar
Havig JR, McCormick ML, Hamilton TL, Kump LR. The behavior of biologically important trace elements across the oxic/euxinic transition of meromictic Fayetteville Green Lake, New York, USA. Geochim Cosmochim Acta. 2015;165:389–406.
Google Scholar
Jürgens K, Taylor GT. Microbial ecology and biogeochemistry of oxygen-deficient water columns. Microbial Ecology of the Ocean, 3rd ed. Hoboken: Wiley; 2018. p. 231–88.
Jost G, Martens-Habbena W, Pollehne F, Schnetger B, Labrenz M. Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea. FEMS Microbiol Ecol. 2010;71:226–36.
Google Scholar
Aller RC, Rude PD. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim Cosmochim Acta. 1988;52:751–65.
Google Scholar
King GM. Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments. FEMS Microbiol Ecol. 1990;73:131–8.
Google Scholar
Source: Ecology - nature.com