in

Climate change threatens native potential agroforestry plant species in Brazil

  • Antonelli, A., Smith, R. J. & Simmonds, M. S. J. Unlocking the properties of plants and fungi for sustainable development. Nat. Plants 5, 1100–1102 (2019).

    PubMed 

    Google Scholar 

  • Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://doi.org/10.5281/zenodo.3553579 (2019).

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science. 355, eaai9214 (2017).

    PubMed 

    Google Scholar 

  • Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Chang. 3, 678–682 (2013).

    ADS 

    Google Scholar 

  • Destro, G. F. G., Fernandes, V., Andrade, A. F. A., De Marco, P. & Terribile, L. C. Back home? Uncertainties for returning seized animals to the source-areas under climate change. Glob. Change Biol. 25, 3242–3253 (2019).

    ADS 

    Google Scholar 

  • Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).

    Google Scholar 

  • IPCC. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).

  • IPCC. Summary for policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P.R. & J. Skea, E. C.) (2019).

  • IPCC. Special Report on 1.5 degrees: Summary for Policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Cha (2018).

  • Ulloa Ulloa, C. et al. An integrated assessment of the vascular plant species of the Americas. Science 358, 1614–1617 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Coradin, L., Siminski, A. & Reis, A. Espécies Nativas da Flora Brasileira de Valor Econômico Atual e Potencial – Plantas para o futuro – Região Sul. (Ministério do Meio Ambiente, 2011).

  • Nair, P. K. R. An introduction to agroforestry (Springer, 1993).

    Google Scholar 

  • Sinclair, F. L. A general classification of agroforestry practice. Agrofor. Syst. 46, 161–180 (1999).

    Google Scholar 

  • Somarriba, E. Revisiting the past: An essay on agroforestry definition. Agrofor. Syst. 19, 233–240 (1992).

    Google Scholar 

  • Cerda, R. et al. Contribution of cocoa agroforestry systems to family income and domestic consumption: Looking toward intensification. Agrofor. Syst. 88, 957–981 (2014).

    Google Scholar 

  • Montagnini, F. Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty Vol. 12 (Springer, New York, 2017).

    Google Scholar 

  • Siddique, I., Dionísio, A. C. & Simões-Ramos, G. A. Construindo Conhecimentos Sobre Agroflorestas em Rede. (UFSC, 2017).

  • Jose, S. Agroforestry for conserving and enhancing biodiversity. Agrofor. Syst. 85, 1–8 (2012).

    Google Scholar 

  • Sistla, S. A. et al. Agroforestry Practices Promote Biodiversity and Natural Resource Diversity in Atlantic Nicaragua. PLoS One 11, e0162529 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos, P. Z. F., Crouzeilles, R. & Sansevero, J. B. B. Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For. Ecol. Manage. 433, 140–145 (2019).

    Google Scholar 

  • Reppin, S., Kuyah, S., de Neergaard, A., Oelofse, M. & Rosenstock, T. S. Contribution of agroforestry to climate change mitigation and livelihoods in Western Kenya. Agrofor. Syst. 94, 203–220 (2020).

    Google Scholar 

  • Marconi, L. & Armengot, L. Complex agroforestry systems against biotic homogenization: The case of plants in the herbaceous stratum of cocoa production systems. Agric. Ecosyst. Environ. 287, 106664 (2020).

    CAS 

    Google Scholar 

  • Somarriba, E. et al. Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric. Ecosyst. Environ. 173, 46–57 (2013).

    Google Scholar 

  • De Stefano, A. & Jacobson, M. G. Soil carbon sequestration in agroforestry systems: A meta-analysis. Agrofor. Syst. 92, 285–299 (2017).

    Google Scholar 

  • Gomes, L. C. et al. Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil. Agric. Ecosyst. Environ. 294, 106858 (2020).

    Google Scholar 

  • Kofsky, J., Zhang, H. & Song, B.-H. The Untapped Genetic Reservoir: The Past, Current, and Future Applications of the Wild Soybean (Glycine soja). Front. Plant Sci. 9, 285–299 (2018).

    Google Scholar 

  • Lorenzi, H. Arvores Brasileiras. (Plantarum, 2016).

  • Zwiener, V. P. et al. Planning for conservation and restoration under climate and land use change in the Brazilian Atlantic Forest. Divers. Distrib. 23, 955–966 (2017).

    Google Scholar 

  • Zechini, A. A. et al. Genetic conservation of Brazilian Pine (Araucaria angustifolia) through traditional land use. Econ. Bot. 72, 166–179 (2018).

    Google Scholar 

  • Donazzolo, J., Stefenon, V. M., Guerra, M. P. & Nodari, R. O. On farm management of Acca sellowiana (Myrtaceae) as a strategy for conservation of species genetic diversity. Sci. Hortic. (Amsterdam) 259, 108826 (2020).

    CAS 

    Google Scholar 

  • Favreto, R., Mello, R. S. P. & de Moura Baptista, L. R. Growth of Euterpe edulis Mart (Arecaceae) under forest and agroforestry in southern Brazil. Agrofor. Syst. https://doi.org/10.1007/s10457-010-9321-z (2010).

    Article 

    Google Scholar 

  • Siminski, A., dos Santos, K. L. & Wendt, J. G. N. Rescuing agroforestry as strategy for agriculture in Southern Brazil. J. For. Res. 27, 739–746 (2016).

    Google Scholar 

  • da Silva, L. C. R., Machado, S. A., Galvão, F. & Filho, A. F. Floristic evolution in an agroforestry system cultivation in Southern Brazil. An. Acad. Bras. Cienc. https://doi.org/10.1590/0001-3765201620150026 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Gomes, V. H. F. et al. Species distribution modelling: Contrasting presence-only models with plot abundance data. Sci. Rep. 8, 1003 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    PubMed 

    Google Scholar 

  • Raes, N. & Aguirre-Gutiérrez, J. A Modeling Framework to Estimate and Project Species Distributions in Space and Time Pontocaspian biodiversity RIse and DEmise View project Current and Future Biodiversity Patterns in Mainland Southeast Asia View project. (2018).

  • Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN red list. Trends Ecol. Evol. 34, 977–986 (2019).

    PubMed 

    Google Scholar 

  • Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2, 1–10 (2005).

    Google Scholar 

  • Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Reis, M. S. et al. Domesticated landscapes in Araucaria Forests, Southern Brazil: A multispecies local conservation-by-use system. Front. Ecol. Evol. 6, 1–14 (2018).

    Google Scholar 

  • IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prep. by Stand. Petitions Comm. (2019).

  • Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P. & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Chang. 9, 547–553 (2019).

    ADS 

    Google Scholar 

  • Guo, Y. et al. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci. Rep. 7, 46221 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Rodrigues, P., Silva, J., Eisenlohr, P. & Schaefer, C. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests. Braz. J. Biol. 75, 679–684 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Wilson, O. J., Walters, R. J., Mayle, F. E., Lingner, D. V. & Vibrans, A. C. Cold spot microrefugia hold the key to survival for Brazil’s critically endangered araucaria tree. Glob. Chang. Biol. 25, 4339–4351 (2019).

    PubMed 
    ADS 

    Google Scholar 

  • Cámara-Leret, R. et al. Climate change threatens New Guinea’s biocultural heritage. Sci. Adv. 5, eaaz1455 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Esser, L. F., Saraiva, D. D. & Jarenkow, J. A. Future uncertainties for the distribution and conservation of Paubrasilia echinata under climate change. Acta Bot. Brasilica 33, 770–776 (2019).

    Google Scholar 

  • Lima, V. P., Marchioro, C. A., Joner, F., ter Steege, H. & Siddique, I. Extinction threat to neglected Plinia edulis exacerbated by climate change, yet likely mitigated by conservation through sustainable use. Austral Ecol. 45, 376–383 (2020).

    Google Scholar 

  • Santini, L., Benítez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. J. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27, 1–16 (2021).

    Google Scholar 

  • Raes, N. et al. Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima. Proc. Natl. Acad. Sci. 111, 16790–16795 (2014).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Vaz, Ú. L. & Nabout, J. C. Using ecological niche models to predict the impact of global climate change on the geographical distribution and productivity of Euterpe oleracea Mart. (Arecaceae) in the Amazon. Acta Bot. Brasilica 30, 290–295 (2016).

    Google Scholar 

  • Sánchez-Fernández, D. et al. Thermal niche estimators and the capability of poor dispersal species to cope with climate change. Sci. Rep. 6, 23381 (2016).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • de Lima, R. A. F. et al. How much do we know about the endangered Atlantic Forest? Reviewing nearly 70 years of information on tree community surveys. Biodivers. Conserv. 24, 2135–2148 (2015).

    Google Scholar 

  • Ribeiro, M. C. et al. The Brazilian Atlantic Forest: A Shrinking Biodiversity Hotspot (Springer, New York, 2011).

    Google Scholar 

  • Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Siddique, I. et al. Woody species richness drives synergistic recovery of socio-ecological multifunctionality along early tropical dry forest regeneration. For. Ecol. Manag. 482, 118848 (2021).

    Google Scholar 

  • Harvey, C. A. et al. Climate-smart landscapes: Opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv. Lett. 7, 77–90 (2014).

    Google Scholar 

  • Schneidewind, U. et al. Carbon stocks, litterfall and pruning residues in monoculture and agroforestry cacao production systems. Exp. Agric. 55, 452–470 (2019).

    Google Scholar 

  • Dinesh, D., Campbell, B. M., Bonilla-findji, O. & Richards, M. 10 Best Bet Innovations for Adaptation in Agriculture: A supplement to the UNFCCC NAP Technical Guidelines. Working paper 215 (2017).

  • Lin, B. B., Perfecto, I. & Vandermeer, J. Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. Bioscience 58, 847–854 (2008).

    Google Scholar 

  • Perfecto, I., John Vandermeer & Angus Wright. 2019 Nature’s Matrix: Linking Agriculture, Biodiversity Conservation and Food Sovereignty. (Routledge, 2019).

  • Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43, 943–953 (2020).

    Google Scholar 

  • Zizka, A. et al. Biogeography and conservation status of the pineapple family (Bromeliaceae). Divers. Distrib. 26, 183–195 (2020).

    Google Scholar 

  • Elias, G. A., Lima, J. M. T. & dos Santos, R. Threatened flora from the State of Santa Catarina, Brazil: Arecaceae. Hoehnea 46, e322018 (2019).

    Google Scholar 

  • Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752–1246752 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Brancalion, P. H. S. et al. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol. Conserv. 240, 108274 (2019).

    Google Scholar 

  • Crouzeilles, R. et al. There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspect. Ecol. Conserv. 17, 80–83 (2019).

    Google Scholar 

  • Magnago, L. F. S. et al. Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?. Glob. Chang. Biol. 21, 3455–3468 (2015).

    PubMed 
    ADS 

    Google Scholar 

  • Rodrigues, A. C., Villa, P. M. & Neri, A. V. Fine-scale topography shape richness, community composition, stem and biomass hyperdominant species in Brazilian Atlantic forest. Ecol. Indic. 102, 208–217 (2019).

    Google Scholar 

  • de Lima, R. A. F. et al. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nat. Commun. 11, 6347 (2020).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Loreau, M. Reconciling utilitarian and non-utilitarian approaches to biodiversity conservation. Ethics Sci. Environ. Polit. 14, 27–32 (2014).

    Google Scholar 

  • Berkes, F. & Folke, C. Linking social and ecological resilience and sustainability. In Linking Social and Ecological Systems. Management Practices and Social Mechanisms for Building Resilience (Cambridge University Press, Cambridge, 2000).

  • Fernandes, R. C. & Piovezana, L. The Kaingang perspectives on land and environmental rights in the south of Brazil. Ambient. Soc. 18, 111–128 (2015).

    Google Scholar 

  • Machado Mello, A. J. & Peroni, N. Cultural landscapes of the Araucaria Forests in the northern plateau of Santa Catarina, Brazil. J. Ethnobiol. Ethnomed. 11, 51 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography 43, 1261–1277 (2020).

    Google Scholar 

  • Warren, D. L., Matzke, N. J. & Iglesias, T. L. Evaluating presence-only species distribution models with discrimination accuracy is uninformative for many applications. J. Biogeogr. 47, 167–180 (2020).

    Google Scholar 

  • Leroy, B. et al. Without quality presence-absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 45, 1994–2002 (2018).

    Google Scholar 

  • Araujo, M. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    PubMed 

    Google Scholar 

  • Raes, N. & ter Steege, H. A null-model for significance testing of presence-only species distribution models. Ecography 30, 727–736 (2007).

    Google Scholar 

  • Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).

  • Loiselle, B. A. et al. Avoiding pitfalls of using species distribution models in conservation planning. Conserv. Biol. 17, 1591–1600 (2003).

  • Bean, W. T., Stafford, R. & Brashares, J. S. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35, 250–258 (2012).

    Google Scholar 

  • Meyer, A. L. S., Pie, M. R. & Passos, F. C. Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. Am. J. Primatol. 76, 551–562 (2014).

    PubMed 

    Google Scholar 

  • Araújo, M. B. & Pearson, R. G. Equilibrium of species’ distributions with climate. Ecography 28, 693–695 (2005).

    Google Scholar 

  • Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).

    Google Scholar 

  • Bascompte, J., García, M. B., Ortega, R., Rezende, E. L. & Pironon, S. Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Sci. Adv. 5, eaav2539 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Thuiller, W. et al. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 9, 137–152 (2008).

    Google Scholar 

  • Mayle, F. E. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 2291–2294 (2000).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).

    PubMed 

    Google Scholar 

  • Ordonez, J. C. Constraints and opportunities for tree diversity management along the forest transition curve to achieve multifunctional agriculture. Curr. Opin. Environ. Sustain. 6, 54–60 (2014).

  • Levis, C. et al. How People Domesticated Amazonian Forests. Front. Ecol. Evol. 5, 171 (2018).

  • Mendes, P., Velazco, S. J. E., de Andrade, A. F. A. & De Marco, P. Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecol. Modell. 431, 109180 (2020).

    Google Scholar 

  • GBIF. GBIF Occurrence. https://www.gbif.org, https://doi.org/10.15468/dl.vjezvb (2019)

  • Carvalho, G. flora: Tools for Interacting with the Brazilian Flora 2020. R package version 0.3.0. (2017).

  • Raes, N. Partial versus full species distribution models. Nat. Conserv. 10, 127–138 (2012).

    Google Scholar 

  • Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2020).

  • Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232–1244 (2016).

    Google Scholar 

  • Daru, B. H. et al. Widespread sampling biases in herbaria revealed from large-scale digitization. New Phytol. 217, 939–955 (2018).

    PubMed 

    Google Scholar 

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Google Scholar 

  • Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).

    Google Scholar 

  • Beaumont, L. J. et al. Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?. Ecol. Modell. 342, 135–146 (2016).

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256 (2018).

    Google Scholar 

  • Austin, M. P. & Van Niel, K. P. Improving species distribution models for climate change studies: Variable selection and scale. J. Biogeogr. 38, 1–8 (2011).

    Google Scholar 

  • Woodward, F. I. Climate and Plant Distribution. (Cambridge Univ. Press., 1987).

  • IUCN. Plant Growth Forms Classification Scheme. Version: 1.0. https://www.iucnredlist.org/resources/classification-schemes (2020).

  • Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Google Scholar 

  • Fremout, T. et al. Mapping tree species vulnerability to multiple threats as a guide to restoration and conservation of tropical dry forests. Glob. Chang. Biol. 26, 3552–3568 (2020).

    PubMed 
    ADS 

    Google Scholar 

  • Naimi, B. Package ‘ usdm ’. R Topics Document (2015).

  • Syfert, M. M. et al. Using species distribution models to inform IUCN Red List assessments. Biol. Conserv. 177, 174–184 (2014).

    Google Scholar 

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).

    Google Scholar 

  • Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).

    Google Scholar 

  • Muñoz-Pajares, A. J. et al. Niche differences may explain the geographic distribution of cytotypes in Erysimum mediohispanicum. Plant Biol. 20, 139–147 (2018).

    PubMed 

    Google Scholar 

  • Peng, L.-P. et al. Modelling environmentally suitable areas for the potential introduction and cultivation of the emerging oil crop Paeonia ostii in China. Sci. Rep. 9, 3213 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).

    Google Scholar 

  • Boucher-Lalonde, V., Morin, A. & Currie, D. J. How are tree species distributed in climatic space? A simple and general pattern. Glob. Ecol. Biogeogr. 21, 1157–1166 (2012).

    Google Scholar 

  • Elith, J., Ferrier, S., Huettmann, F. & Leathwick, J. The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecol. Modell. 186, 280–289 (2005).

    Google Scholar 

  • Jiménez-Valverde, A. & Lobo, J. M. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica 31, 361–369 (2007).

    ADS 

    Google Scholar 

  • Betts, J. et al. A framework for evaluating the impact of the IUCN Red List of threatened species. Conserv. Biol. 34, 632–643 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • ter Steege, H. et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 1, e1500936 (2015).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Dauby, G. et al. ConR : An R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol. Evol. 7, 11292–11303 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    RNA test detects deadly pregnancy disorder early

    Modelling the emergence dynamics of the western corn rootworm beetle (Diabrotica virgifera virgifera)