in

Molecular assays to reliably detect and quantify predation on a forest pest in bats faeces

  • Buxton, R. D. Forest management and the pine processionary moth. Outlook Agric. 12, 34–39 (1983).

    Google Scholar 

  • Gatto, P. et al. Economic assessment of managing processionary moth in pine forests: A case-study in Portugal. J. Environ. Manage. 90, 683–691 (2009).

    PubMed 

    Google Scholar 

  • Battisti, A., Larsson, S. & Roques, A. Processionary moths and associated urtication risk: Global change–driven effects. Annu. Rev. Entomol. 62, 323–342 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Moneo, I. et al. Medical and veterinary impact of the urticating processionary larvae. In Processionary Moths and Climate Change: An Update, 359–410 (Springer, 2015).

  • Battisti, A. et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15, 2084–2096 (2005).

    Google Scholar 

  • Kerdelhué, C. et al. Quaternary history and contemporary patterns in a currently expanding species. BMC Evol. Biol. 9, 220 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinet, C., Rousselet, J., Pineau, P., Miard, F. & Roques, A. Are heat waves susceptible to mitigate the expansion of a species progressing with global warming?. Ecol. Evol. 3, 2947–2957 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Auger-Rozenberg, M. A. et al. Ecological responses of parasitoids, predators and associated insect communities to the climate-driven expansion of the pine processionary moth. In Processionary Moths and Climate Change: An Update, 311–357 (Springer, 2015).

  • Garin, I. et al. Bats from different foraging guilds prey upon the pine processionary moth. PeerJ 7, e7169 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Charbonnier, Y., Barbaro, L., Theillout, A. & Jactel, H. Numerical and functional responses of forest bats to a major insect pest in pine plantations. PLoS ONE 9, e109488 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goiti, U., Aihartza, J. R., Almenar, D., Salsamendi, E. & Garin, I. Seasonal foraging by Rhinolophus euryale (Rhinolophidae) in an Atlantic rural landscape in northern Iberian Peninsula. Acta Chiropterol. 8, 141–155 (2006).

    Google Scholar 

  • Russo, D. et al. Habitat selection in sympatric Rhinolophus mehelyi and R. euryale (Mammalia: Chiroptera). J. Zool. 266, 327–332 (2005).

    Google Scholar 

  • Vincent, S., Nemoz, M. & Aulagnier, S. Activity and foraging habitats of Miniopterus schreibersii (Chiroptera: Miniopteridae) in southern France: Implications for its conservation. Hystrix Ital. J. Mammal. https://doi.org/10.4404/hystrix-22.1-4524 (2010).

    Article 

    Google Scholar 

  • Rydell, J. Site fidelity in the northern bat (Eptesicus nilssoni) during pregnancy and lactation. J. Mammal. 70, 614–617 (1989).

    Google Scholar 

  • Baroja, U. et al. Bats actively track and prey on grape pest populations. Ecol. Indic. 126, 107718 (2021).

    Google Scholar 

  • Aldasoro, M. et al. Gaining ecological insight on dietary allocation among horseshoe bats through molecular primer combination. PLoS ONE 14, e0220081 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baroja, U. et al. Pest consumption in a vineyard system by the lesser horseshoe bat (Rhinolophus hipposideros). PLoS ONE 14, e0219265 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vallejo, N. et al. The diet of the notch-eared bat (Myotis emarginatus) across the Iberian Peninsula analysed by amplicon metabarcoding. Hystrix Ital. J. Mammal. 30, 59–64 (2019).

    Google Scholar 

  • Bohmann, K. et al. Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS ONE 6, e21441 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing?. Mol. Ecol. 21, 1931–1950 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Elbrecht, V. & Leese, F. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front. Environ. Sci. 5, 11 (2017).

    Google Scholar 

  • Evans, N. T. et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16, 29–41 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Harper, L. R. et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol. Evol. 8, 6330–6341 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28(2), 391–406 (2019).

    PubMed 

    Google Scholar 

  • Piñol, J., Mir, G., Gomez-Polo, P. & Agustí, N. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol. Ecol. Resour. 15, 819–830 (2015).

    PubMed 

    Google Scholar 

  • Jarman, S. N., Deagle, B. E. & Gales, N. J. Group-specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary samples. Mol. Ecol. 13, 1313–1322 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Piggott, M. P. Evaluating the effects of laboratory protocols on eDNA detection probability for an endangered freshwater fish. Ecol. Evol. 6, 2739–2750 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Knudsen, S. W. et al. Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. J. Exp. Mar. Biol. Ecol. 510, 31–45 (2019).

    CAS 

    Google Scholar 

  • Kaňuch, P., Hájková, P., Řehák, Z. & Bryja, J. A rapid PCR-based test for species identification of two cryptic bats Pipistrellus pipistrellus and P. pygmaeus and its application on museum and dropping samples. Acta Chiropterol. 9, 277–282 (2007).

    Google Scholar 

  • Czernik, M. et al. Fast and efficient DNA-based method for winter diet analysis from stools of three cervids: Moose, red deer, and roe deer. Acta Theriol. 58, 379–386 (2013).

    Google Scholar 

  • Schattanek, P., Riccabona, S. A., Rennstam Rubbmark, O. & Traugott, M. Detection of prey DNA in bat feces: Effects of time since feeding, meal size, and prey identity. Environ. DNA 3, 959–969 (2021).

    Google Scholar 

  • Martin, K. J. & Rygiewicz, P. T. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 5, 28 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nowakowska, J. A., Malewski, T., Tereba, A. & Oszako, T. Rapid diagnosis of pathogenic Phytophthora species in soil by real-time PCR. For. Pathol. 47, e12303 (2017).

    Google Scholar 

  • Bott, N. J. et al. Toward routine, DNA-based detection methods for marine pests. Biotechnol. Adv. 28, 706–714 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Schmidt, B. R., Kery, M., Ursenbacher, S., Hyman, O. J. & Collins, J. P. Site occupancy models in the analysis of environmental DNA presence/absence surveys: A case study of an emerging amphibian pathogen. Methods Ecol. Evol. 4, 646–653 (2013).

    Google Scholar 

  • McCracken, G. F., Brown, V. A., Eldridge, M. & Westbrook, J. K. The use of fecal DNA to verify and quantify the consumption of agricultural pests. Bat Res. News 46, 195–196 (2005).

    Google Scholar 

  • McCracken, G. F. et al. Bats track and exploit changes in insect pest populations. PLoS ONE 7, e43839 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marshall, O. J. PerlPrimer: Cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20, 2471–2472 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Simonato, M. et al. Host and phenology shifts in the evolution of the social moth genus Thaumetopoea. PLoS ONE 8, e57192 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25, 4692–4693 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Razgour, O. et al. High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecol. Evol. 1, 556–570 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Page, A. & Gomez-Curet, I. Assuring reliability of qPCR & RT-PCR results: Use of spectrophotometry on nucleic acid samples before experiment improves outcome. Genet. Eng. Biotechnol. News 31(16), 26–26 (2011).

    Google Scholar 

  • Hall, T. A. ioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 41 (1999).

    Google Scholar 

  • Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organisation and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (2020). (R Foundation for Statistical Computing). https://www.R-project.org/. Accessed 10 May 2021.

  • Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and nonlinear mixed effects models. R Package Version 3, 1–89 (2021).

    Google Scholar 

  • Wickham, H. Ggplot2: Elegrant Graphics for Data Analysis (Springer, 2016).

    MATH 

    Google Scholar 

  • Arrizabalaga-Escudero, A. et al. Trait-based functional dietary analysis provides a better insight into the foraging ecology of bats. J. Anim. Ecol. 88, 1587–1600 (2019).

    PubMed 

    Google Scholar 

  • Curtsdotter, A. et al. Ecosystem function in predator–prey food webs—Confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2019).

    PubMed 

    Google Scholar 

  • Michalko, R., Pekár, S. & Entling, M. H. An updated perspective on spiders as generalist predators in biological control. Oecologia 189, 21–36 (2019).

    ADS 

    Google Scholar 

  • Sun, C. et al. polymerase chain reaction assisted by metal–organic frameworks. Chem. Sci. 11, 797–802 (2020).

    CAS 

    Google Scholar 

  • Roux, K. H. Optimisation and troubleshooting in PCR. Cold Spring Harbor Protoc. 4, 66 (2009).

    Google Scholar 

  • Xia, Z. et al. Conventional versus real-time quantitative PCR for rare species detection. Ecol. Evol. 8, 11799–11807 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, T. B., Liu, J. & Chen, J. Compared with conventional PCR assay, qPCR assay greatly improves the detection efficiency of predation. Ecol. Evol. 10, 7713–7722 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mauvisseau, Q. et al. Influence of accuracy, repeatability and detection probability in the reliability of species-specific eDNA based approaches. Sci. Rep. 9, 1–10 (2019).

    Google Scholar 

  • Smith, C. J. & Osborn, A. M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67, 6–20 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Molecular analysis of predation: A review of best practice for DNA-based approaches. Mol. Ecol. 17, 947–963 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Burbank, L. P. & Ortega, B. C. Novel amplification targets for rapid detection and differentiation of Xylella fastidiosa subspecies fastidiosa and multiplex in plant and insect tissues. J. Microbiol. Methods 155, 8–18 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).

    PubMed 

    Google Scholar 

  • Sow, A., Haran, J., Benoit, L., Galan, M. & Brévault, T. DNA metabarcoding as a tool for disentangling food webs in agroecosystems. Insects 11, 294 (2020).

    PubMed Central 

    Google Scholar 

  • Wood, S. A. et al. A comparison of droplet digital polymerase chain reaction (PCR), quantitative PCR and metabarcoding for species-specific detection in environmental DNA. Mol. Ecol. Resour. 19, 1407–1419 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Maslo, B. et al. Chirosurveillance: The use of native bats to detect invasive agricultural pests. PLoS ONE 12, e0173321 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Purcell, R. V. et al. Comparison of standard, quantitative and digital PCR in the detection of enterotoxigenic Bacteroides fragilis. Sci. Rep. 6, 1–8 (2016).

    MathSciNet 

    Google Scholar 

  • Behrens-Chapuis, S., Herder, F. & Geiger, M. F. Adding DNA barcoding to stream monitoring protocols—What’s the additional value and congruence between morphological and molecular identification approaches?. PLoS ONE 16(1), e0244598 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    RNA test detects deadly pregnancy disorder early

    Modelling the emergence dynamics of the western corn rootworm beetle (Diabrotica virgifera virgifera)