in

Using DNA metabarcoding as a novel approach for analysis of platypus diet

  • Clare, E., Barber, B., Sweeney, B., Hebert, P. & Fenton, M. Eating local: Influences of habitat on the diet of little brown bats (Myotis lucifugus). Mol. Ecol. 20, 1772–1780 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Larter, N. C. & Gates, C. C. Diet and habitat selection of wood bison in relation to seasonal changes in forage quantity and quality. Can. J. Zool. 69, 2677–2685 (1991).

    Article 

    Google Scholar 

  • Veloso, C. & Bozinovic, F. Dietary and digestive constraints on basal energy metabolism in a small herbivorous rodent. Ecology 74, 2003–2010 (1993).

    Article 

    Google Scholar 

  • Hawke, T., Bates, H., Hand, S., Archer, M. & Broome, L. Dietary analysis of an uncharacteristic population of the Mountain Pygmy-possum (Burramys parvus) in the Kosciuszko National Park, New South Wales, Australia. PeerJ 7, e6307 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pearce-Higgins, J. W. Using diet to assess the sensitivity of northern and upland birds to climate change. Clim. Res. 45, 119–130 (2010).

    Article 

    Google Scholar 

  • Eitzinger, B. et al. Assessing changes in arthropod predator-prey interactions through DNA-based gut content analysis—variable environment, stable diet. Mol. Ecol. 28, 266–280 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Edgar, G. J. Predator-prey interactions in seagrass beds. II. Distribution and diet of the blue manna crab Portunus pelagicus Linnaeus at Cliff Head, Western Australia. J. Exp. Mar. Biol. Ecol. 139, 23–32 (1990).

    Article 

    Google Scholar 

  • Beck, J. L., Peek, J. M. & Strand, E. K. Estimates of elk summer range nutritional carrying capacity constrained by probabilities of habitat selection. J. Wildl. Manag. 70, 283–294 (2006).

    Article 

    Google Scholar 

  • DeYoung, R. W., Hellgren, E. C., Fulbright, T. E., Robbins, W. F. Jr. & Humphreys, I. D. Modeling nutritional carrying capacity for translocated desert bighorn sheep in western Texas. Restor. Ecol. 8, 57–65 (2000).

    Article 

    Google Scholar 

  • Hua, L. et al. Captive breeding of pangolins: current status, problems and future prospects. Zookeys 507, 99–114 (2015).

    Article 

    Google Scholar 

  • Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2017).

    Article 

    Google Scholar 

  • Galimberti, A. et al. DNA barcoding as a new tool for food traceability. Food Res. Int. 50, 55–63 (2013).

    CAS 
    Article 

    Google Scholar 

  • Soininen, E. M. et al. Shedding new light on the diet of Norwegian lemmings: DNA metabarcoding of stomach content. Polar Biol. 36, 1069–1076 (2013).

    Article 

    Google Scholar 

  • Rees, G. N., Shackleton, M. E., Watson, G. O., Dwyer, G. K. & Stoffels, R. J. Metabarcoding demonstrates dietary niche partitioning in two coexisting blackfish species. Mar. Freshw. Res. 71(4), 512–517 (2019).

    Article 

    Google Scholar 

  • Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aylagas, E., Borja, Á., Irigoien, X. & Rodriguez-Ezpeleta, N. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front. Mar. Sci. 3, 96 (2016).

    Google Scholar 

  • De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Kartzinel, T. R. et al. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Natl. Acad. Sci. 112, 8019–8024 (2015).

    CAS 
    PubMed 
    PubMed Central 
    ADS 
    Article 

    Google Scholar 

  • Lopes, C. et al. DNA metabarcoding diet analysis for species with parapatric vs sympatric distribution: A case study on subterranean rodents. Heredity 114, 525–536 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guillerault, N., Bouletreau, S., Iribar, A., Valentini, A. & Santoul, F. Application of DNA metabarcoding on faeces to identify European catfish Silurus glanis diet. J. Fish Biol. 90, 2214–2219 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jakubavivciute, E., Bergström, U., Eklöf, J. S., Haenel, Q. & Bourlat, S. J. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE 12, e0186929 (2017).

    Article 

    Google Scholar 

  • Grant, T. & Fanning, D. Platypus 4th edn. (CSIRO Publishing, 2007).

    Book 

    Google Scholar 

  • Hawke, T. et al. Long-term movements and activity patterns of platypus on regulated rivers. Sci. Rep. 11, 1–11 (2021).

    MathSciNet 
    Article 

    Google Scholar 

  • Gregory, J., Iggo, A., McIntyre, A. & Proske, U. Receptors in the bill of the platypus. J. Physiol. 400, 349 (1988).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McLachlan-Troup, T., Dickman, C. & Grant, T. Diet and dietary selectivity of the platypus in relation to season, sex and macroinvertebrate assemblages. J. Zool. 280, 237–246 (2010).

    Article 

    Google Scholar 

  • Harrop, C. & Hume, I. Digestive tract and digestive function in monotremes and nonmacropod marsupials. Compar. Physiol. Primitive Mamm. 4, 63–77 (1980).

    Google Scholar 

  • Klamt, M., Davis, J. A., Thompson, R. M., Marchant, R. & Grant, T. R. Trophic relationships of the platypus: Insights from stable isotope and cheek pouch dietary analyses. Mar. Freshw. Res. 67, 1196–1204 (2016).

    CAS 
    Article 

    Google Scholar 

  • Faragher, R., Grant, T. & Carrick, F. Food of the platypus (Ornithorhynchus anatinus) with notes on the food of brown trout (Salmo trutta) in the Shoalhaven River, NSW. Austral. J. Ecol. 4, 171–179 (1979).

    Article 

    Google Scholar 

  • Grant, T. R. Food of the platypus, Ornithorhynchus anatinus (Ornithorhynchidae: Monotremata) from various water bodies in New South Wales. Aust. Mammal. 5, 135–136 (1982).

    Google Scholar 

  • Marchant, R. & Grant, T. The productivity of the macroinvertebrate prey of the platypus in the upper Shoalhaven River, New South Wales. Mar. Freshw. Res. 66, 1128–1137 (2015).

    Article 

    Google Scholar 

  • Krueger, B., Hunter, S. & Serena, M. Husbandry, diet and behaviour of platypus Ornithorhynchus anatinus at Healesville Sanctuary. Int. Zoo Yearbook 31, 64–71 (1992).

    Article 

    Google Scholar 

  • Thomas, J. L., Handasyde, K. A., Temple-Smith, P. & Parrott, M. L. Seasonal changes in food selection and nutrition of captive platypuses (Ornithorhynchus anatinus). Aust. J. Zool. 65, 319–327 (2018).

    Article 

    Google Scholar 

  • Hawke, T., Bino, G. & Kingsford, R. T. Damming insights: Variable impacts and implications of river regulation on platypus populations. Aquat. Conserv. Mar. Freshwat. Ecosyst. 31, 504–519 (2021).

    Article 

    Google Scholar 

  • Bino, G., Kingsford, R. T., Grant, T., Taylor, M. D. & Vogelnest, L. Use of implanted acoustic tags to assess platypus movement behaviour across spatial and temporal scales. Sci. Rep. 8, 5117 (2018).

    PubMed 
    PubMed Central 
    ADS 
    Article 

    Google Scholar 

  • Chinnadurai, S. K., Strahl-Heldreth, D., Fiorello, C. V. & Harms, C. A. Best-Practice guidelines for field-based surgery and anesthesia of free-ranging wildlife. I. Anesthesia and Analgesia. J. Wildl. Dis. 52(2 Suppl), S14–27. https://doi.org/10.7589/52.2S.S14 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Fiorello, C. V., Harms, C. A., Chinnadurai, S. K. & Strahl-Heldreth, D. Best-Practice guidelines for field-based surgery and anesthesia on free-ranging wildlife. Ii. Surgery. J. Wildl. Dis. 52(2 Suppl), S28–39. https://doi.org/10.7589/52.2S.S28 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Vogelnest, L. & Woods, R. Medicine of Australian mammals: CSIRO Publishing (2008).

  • Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10, 1–14 (2013).

    Article 

    Google Scholar 

  • Greenfield, P. Greenfield hybrid analysis pipeline (GHAP). v1 (CSIRO, 2017).

    Google Scholar 

  • Shackleton, M. et al. How does molecular taxonomy for deriving river health indices correlate with traditional morphological taxonomy?. Ecol. Indic. 125, 107537 (2021).

    Article 

    Google Scholar 

  • Hebert, P. D., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 313–321 (2003).

    CAS 
    Article 

    Google Scholar 

  • Ostell, J. & Sayers, E. W. Dennis A. Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, David J. Lipman.

  • Wilcoxon, F. Individual comparisons by ranking methods. Biometrics Bulletin, 1. In Breakthroughs in Statistics, 196–202 (Springer, 1992).

  • Oksanen, J. et al. Package “vegan”. Community ecology package, version. Vol 2, No. 9, 1–295. (2013).

  • R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

    Google Scholar 


  • Source: Ecology - nature.com

    RNA test detects deadly pregnancy disorder early

    Modelling the emergence dynamics of the western corn rootworm beetle (Diabrotica virgifera virgifera)