Dall, S. R. X. & Johnstone, R. A. Managing uncertainty: Information and insurance under the risk of starvation. Philos. Trans. R. Soc. Lond. B 357, 1519–1526 (2002).
Google Scholar
Balogh, A. C. V., Gamberale-Stille, G. & Leimar, O. Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Anim. Behav. 76, 1591–1599 (2008).
Google Scholar
Barnett, C. A., Bateson, M. & Rowe, C. Better the devil you know: Avian predators find variation in prey toxicity aversive. Biol. Lett. 10, 20140533 (2014).
Google Scholar
Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry 2nd edn. (Oxford University Press, 2018).
Google Scholar
Sherratt, T. N. State-dependent risk-taking by predators in systems with defended prey. Oikos 103, 93–100 (2003).
Google Scholar
Sherratt, T. N., Speed, M. S. & Ruxton, G. D. Natural selection on unpalatable species imposed by state-dependent foraging behaviour. J. Theor. Biol. 228, 217–226 (2004).
Google Scholar
Gamberale-Stille, G. & Guilford, T. Automimicry destabilizes aposematism: Predator sample-and-reject behaviour may provide a solution. Proc. R. Soc. Lond. B 271, 2621–2625 (2004).
Google Scholar
Skelhorn, J. & Rowe, C. Avian predators taste-reject aposematic prey on the basis of their chemical defence. Biol. Lett. 2, 348–350 (2006).
Google Scholar
Skelhorn, J. & Rowe, C. Automimic frequency influences the foraging decisions of avian predators on aposematic prey. Anim. Behav. 74, 1563–1572 (2007).
Google Scholar
Brower, J. V. Z. Experimental studies of mimicry. IV. The reactions of starlings to different proportions of models and mimics. Am. Nat. 94, 271–282 (1960).
Google Scholar
Huheey, J. E. Studies in warning coloration and mimicry VIII. Further evidence for a frequency-dependent model of predation. J. Herpetol. 14, 223–230 (1980).
Avery, M. L. Application of mimicry theory to bird damage control. J. Wildl. Manag. 49, 1116–1121 (1985).
Google Scholar
Nonacs, P. Foraging in a dynamic mimicry complex. Am. Nat. 126, 165–180 (1985).
Google Scholar
Rowland, H. M., Ihalainen, E., Lindström, L., Mappes, J. & Speed, M. P. Co-mimics have a mutualistic relationship despite unequal defences. Nature 448, 64–67 (2007).
Google Scholar
Skelhorn, J. & Rowe, C. Predators’ toxin burdens influence their strategic decisions to eat toxic prey. Curr. Biol. 17, 1479–1483 (2007).
Google Scholar
Jones, R. S., Davis, S. C. & Speed, M. P. Defence cheats can degrade protection of chemically defended prey. Ethology 119, 52–57 (2013).
Google Scholar
Guilford, T. “Go-slow” signalling and the problem of automimicry. J. Theor. Biol. 170, 311–316 (1994).
Google Scholar
Skelhorn, J. & Rowe, C. Taste-rejection by predators and the evolution of unpalatability in prey. Behav. Ecol. Sociobiol. 60, 550–555 (2006).
Google Scholar
Chatelain, M., Halpin, C. G. & Rowe, C. Ambient temperature influences birds’ decisions to eat toxic prey. Anim. Behav. 86, 733–740 (2013).
Google Scholar
Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).
Google Scholar
Yamazaki, Y., Pagani-Núñez, E., Sota, T. & Barnett C. R. A. The truth is in the detail: predators attack aposematic prey less intensely than other prey types. Biol. J. Linn. Soc. 131, 332–343 (2020).
Valkonnen, J. K. et al. Variation in predator species abundance can cause variable selection pressure on warning signalling prey. Ecol. Evol. 2, 1971–1976 (2011).
Google Scholar
Nokelainen, O., Valkonen, J., Lindstedt, C. & Mappes, J. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J. Anim. Ecol. 83, 598–605 (2014).
Google Scholar
Bibby, C. J., Burgess, N. D., Hill, D. A. &. Mustoe S. H. Bird Census Techniques (2nd Edition). (Academic Press, London, 2000).
Tsujimoto, D., Lin, C.-H., Kurihara, N. & Barnett, C. R. A. Citizen science in the class-room: the consistency of student collected data and its value in ecological hypothesis testing. Ornithological Sci. 18, 39–47 (2019).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1–48 (2015).
Google Scholar
Rainey, C. Dealing with separation in logistic regression models. Polit. Anal. 24, 339–355 (2016).
Google Scholar
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Meth. Ecol. Evol. 4, 133–142 (2012).
Google Scholar
Hothorn, T,. Bretz, F. & Westfall, P. Simultaneous Inference in General Parametric Models. Biometrical. J. 50, 346–363 (2008).
Paradis, E. & Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Barnett, C. R. A., Ringhofer, M. & Suzuki, T. N. Differences in predatory behavior among three bird species when attacking chemically defended and undefended prey. J. Ethol. 39, 29–37 (2021).
Google Scholar
Carroll, J. & Sherratt, T. N. A direct comparison of the effectiveness of two anti-predator strategies under field conditions. J. Zool. 291, 279–285 (2013).
Google Scholar
Krebs, C. J. Ecological Methodology (2nd Edition). (Benjamin/Cummings, Menlo Park, CA, 1999).
Oksanen, J. vegan: Community Ecology Package. (2020).
R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. URL http://www.Rproject.org (2017).
Marples, N. M., Speed, M. P. & Thomas, R. J. An individual-based profitability spectrum for understanding interactions between predators and their prey. Biol. J. Linn. Soc. 125, 1–13 (2018).
Google Scholar
Boyden, T. C. Butterfly palatability and mimicry: experiments with anolis lizards. Evolution 30, 73–81 (1976).
Google Scholar
Järvi, T., Sillén-Tullberg, B. & Wiklund, C. The cost of being aposematic. An experimental study of predation on larvae of Papilio machaon by the Great Tit Parus major. Oikos 36, 267–272 (1981).
Wiklund, C. & Järvi, T. Survival of distasteful insects after being attacked by naïve birds: a reappraisal of aposematic coloration evolving through individual selection. Evolution 36, 998–1002 (1982).
Google Scholar
Pinheiro, C. E. G. & Campos, V. C. Do rufous-tailed jacamars (Galbula ruficauda) play with aposematic butterflies. Ornitol. Neotrop. 24, 1–3 (2013).
Halpin, C. G. & Rowe, C. The effect of distastefulness and conspicuous coloration on post-attack rejection behaviour of predators and survival of prey. Biol. J. Linn. Soc. 120, 236–244 (2017).
Sillén-Tullberg, B. Higher survival of an aposematic than of a cryptic form of a distasteful bug. Oecologia 67, 411–415 (1985).
Google Scholar
Fisher, R. A. The Genetical Theory of Natural Selection (Clarenden Press, 1930).
Google Scholar
Chai, P. Field observations and feeding experiments on the responses of rufous-tailed jacamars butterflies in a tropical rainforest. Biol. J. Linn. Soc. 29, 161–189 (1986).
Google Scholar
Wang, L.-Y., Huang, W.-S., Tang, H.-C., Huang, L.-C. & Lin, C.-P. Too hard to swallow: A secret secondary defence of an aposematic insect. J. Exp. Biol. 221, jeb172486 (2018).
Google Scholar
Summers, K., Speed, M. P., Blount, J. D. & Stuckert, A. M. M. Are aposematic signals honest? A review. J. Evol. Biol. 28, 1583–1599 (2015).
Google Scholar
Holen, Ø. H. Disentangling taste and toxicity in aposematic prey. Proc. R. Soc. B 280, 20122588 (2013).
Google Scholar
Speed, M. P. & Franks, D. W. Antagonistic evolution in an aposematic predator-prey system. Evolution 68, 2996–3007 (2014).
Google Scholar
Source: Ecology - nature.com