in

Decreasing rainfall frequency contributes to earlier leaf onset in northern ecosystems

  • Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).

    CAS 

    Google Scholar 

  • Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19, 3167–3183 (2013).

    Google Scholar 

  • Vitasse, Y. et al. Assessing the effects of climate change on the phenology of European temperate trees. Agr. Forest Meteorol. 151, 969–980 (2011).

    Google Scholar 

  • Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).

    Google Scholar 

  • Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    CAS 

    Google Scholar 

  • Wang, H. et al. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling. Nat. Commun. 11, 4945 (2020).

    CAS 

    Google Scholar 

  • Myneni, R. C. et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    CAS 

    Google Scholar 

  • Piao, S. et al. Leaf onset in the Northern Hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).

    CAS 

    Google Scholar 

  • Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Phil. Trans. R. Soc. B 365, 3227–3246 (2010).

    Google Scholar 

  • Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    Google Scholar 

  • White, A., Cannell, M. G. R. & Friend, A. D. The high-latitude terrestrial carbon sink: a model analysis. Glob. Change Biol. 6, 227–245 (2000).

    Google Scholar 

  • Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–53 (2008).

    CAS 

    Google Scholar 

  • Fu, Y. H. et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob. Change Biol. 20, 3743–3755 (2014).

    Google Scholar 

  • Yun, J. et al. Influence of winter precipitation on spring phenology in boreal forests. Glob. Change Biol. 11, 5176–5187 (2018).

    Google Scholar 

  • Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation. Glob. Change Biol. 21, 2687–2697 (2015).

    Google Scholar 

  • Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94, 105–121 (2009).

    Google Scholar 

  • Peñuelas, J. et al. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol. 161, 837–846 (2004).

    Google Scholar 

  • Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).

    Google Scholar 

  • Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

    CAS 

    Google Scholar 

  • Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

    Google Scholar 

  • Qian, W., Fu, J. & Yan, Z. Decrease of light rain events in summer associated with a warming environment in China during 1961–2005. Geophys. Res. Lett. 34, L11705 (2007).

    Google Scholar 

  • Sun, Y., Solomon, S., Dai, A. & Portmann, R. W. How often will it rain? J. Clim. 20, 4801–4818 (2007).

    Google Scholar 

  • Chou, C. et al. Mechanisms for global warming impacts on precipitation frequency and intensity. J. Clim. 13, 3291–3306 (2012).

    Google Scholar 

  • Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Google Scholar 

  • Fowler, M. D., Kooperman, G. J., Randerson, J. T. & Pritchard, M. S. The effect of plant physiological responses to rising CO2 on global streamflow. Nat. Clim. Change 9, 873–879 (2019).

    CAS 

    Google Scholar 

  • Belnap, J., Phillips, S. L. & Miller, M. E. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141, 306–316 (2004).

    Google Scholar 

  • Knapp, A. K. et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58, 811–821 (2008).

    Google Scholar 

  • Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).

    CAS 

    Google Scholar 

  • De Boeck, H. J., Dreesen, F. E., Janssens, I. A. & Nijs, I. Climatic characteristics of heat waves and their simulation in plant experiments. Glob. Change Biol. 16, 1992–2000 (2010).

    Google Scholar 

  • Shen, M. et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).

    Google Scholar 

  • Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).

    Google Scholar 

  • Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).

    Google Scholar 

  • Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).

    Google Scholar 

  • White, M. A., Thornton, P. E. & Running, S. W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 11, 217–234 (1997).

    CAS 

    Google Scholar 

  • Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).

    Google Scholar 

  • Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).

    Google Scholar 

  • Schwartz, M. D., Betancourt, J. L. & Weltzin, J. F. From Caprio’s lilacs to the USA National Phenology Network. Front. Ecol. Environ. 10, 324–327 (2012).

    Google Scholar 

  • Wu, C. et al. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob. Ecol. Biogeogr. 22, 994–1006 (2013).

    Google Scholar 

  • Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).

    Google Scholar 

  • Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agr. Forest Meteorol. 291, 108077 (2020).

    Google Scholar 

  • Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).

    Google Scholar 

  • Shen, M. et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agr. Forest Meteorol. 189, 71–80 (2014).

    Google Scholar 

  • Wu, C. et al. Widespread decline in winds delayed autumn foliar senescence over high latitudes. Proc. Natl Acad. Sci. USA 118, e2015821118 (2021).

    CAS 

    Google Scholar 

  • Elmore, A. J. et al. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Change Biol. 18, 656–674 (2012).

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Google Scholar 

  • Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  • New, M., Hulme, M. & Jones, P. D. Representing twentieth‐century space–time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. J. Clim. 12, 829–856 (1999).

    Google Scholar 

  • Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dynam. 4, 219–236 (2013).

    Google Scholar 

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Google Scholar 

  • Vicenteserrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Clim. 23, 1696–1718 (2010).

    Google Scholar 

  • Barr, A. G. et al. Inter‐annual variability in the leaf area index of a boreal aspen–hazelnut forest in relation to net ecosystem production. Agr. Forest Meteorol. 126, 237–255 (2004).

    Google Scholar 

  • Chen, J., Chen, W., Liu, J., Cihlar, J. & Gray, S. Annual carbon balance of Canada’s forests during 1895–1996. Glob. Biogeochem. Cycles 14, 839–849 (2000).

    CAS 

    Google Scholar 

  • Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

    Google Scholar 


  • Source: Ecology - nature.com

    Stakeholder collaboration

    First-ever Climate Grand Challenges recognizes 27 finalists