Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).
Google Scholar
Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19, 3167–3183 (2013).
Vitasse, Y. et al. Assessing the effects of climate change on the phenology of European temperate trees. Agr. Forest Meteorol. 151, 969–980 (2011).
Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).
Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).
Google Scholar
Wang, H. et al. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling. Nat. Commun. 11, 4945 (2020).
Google Scholar
Myneni, R. C. et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).
Google Scholar
Piao, S. et al. Leaf onset in the Northern Hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).
Google Scholar
Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Phil. Trans. R. Soc. B 365, 3227–3246 (2010).
Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
White, A., Cannell, M. G. R. & Friend, A. D. The high-latitude terrestrial carbon sink: a model analysis. Glob. Change Biol. 6, 227–245 (2000).
Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–53 (2008).
Google Scholar
Fu, Y. H. et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob. Change Biol. 20, 3743–3755 (2014).
Yun, J. et al. Influence of winter precipitation on spring phenology in boreal forests. Glob. Change Biol. 11, 5176–5187 (2018).
Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation. Glob. Change Biol. 21, 2687–2697 (2015).
Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94, 105–121 (2009).
Peñuelas, J. et al. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol. 161, 837–846 (2004).
Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).
Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).
Google Scholar
Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).
Qian, W., Fu, J. & Yan, Z. Decrease of light rain events in summer associated with a warming environment in China during 1961–2005. Geophys. Res. Lett. 34, L11705 (2007).
Sun, Y., Solomon, S., Dai, A. & Portmann, R. W. How often will it rain? J. Clim. 20, 4801–4818 (2007).
Chou, C. et al. Mechanisms for global warming impacts on precipitation frequency and intensity. J. Clim. 13, 3291–3306 (2012).
Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).
Fowler, M. D., Kooperman, G. J., Randerson, J. T. & Pritchard, M. S. The effect of plant physiological responses to rising CO2 on global streamflow. Nat. Clim. Change 9, 873–879 (2019).
Google Scholar
Belnap, J., Phillips, S. L. & Miller, M. E. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141, 306–316 (2004).
Knapp, A. K. et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58, 811–821 (2008).
Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).
Google Scholar
De Boeck, H. J., Dreesen, F. E., Janssens, I. A. & Nijs, I. Climatic characteristics of heat waves and their simulation in plant experiments. Glob. Change Biol. 16, 1992–2000 (2010).
Shen, M. et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).
Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).
Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).
Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).
White, M. A., Thornton, P. E. & Running, S. W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 11, 217–234 (1997).
Google Scholar
Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).
Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).
Schwartz, M. D., Betancourt, J. L. & Weltzin, J. F. From Caprio’s lilacs to the USA National Phenology Network. Front. Ecol. Environ. 10, 324–327 (2012).
Wu, C. et al. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob. Ecol. Biogeogr. 22, 994–1006 (2013).
Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).
Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agr. Forest Meteorol. 291, 108077 (2020).
Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).
Shen, M. et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agr. Forest Meteorol. 189, 71–80 (2014).
Wu, C. et al. Widespread decline in winds delayed autumn foliar senescence over high latitudes. Proc. Natl Acad. Sci. USA 118, e2015821118 (2021).
Google Scholar
Elmore, A. J. et al. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Change Biol. 18, 656–674 (2012).
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
New, M., Hulme, M. & Jones, P. D. Representing twentieth‐century space–time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. J. Clim. 12, 829–856 (1999).
Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dynam. 4, 219–236 (2013).
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
Vicenteserrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Clim. 23, 1696–1718 (2010).
Barr, A. G. et al. Inter‐annual variability in the leaf area index of a boreal aspen–hazelnut forest in relation to net ecosystem production. Agr. Forest Meteorol. 126, 237–255 (2004).
Chen, J., Chen, W., Liu, J., Cihlar, J. & Gray, S. Annual carbon balance of Canada’s forests during 1895–1996. Glob. Biogeochem. Cycles 14, 839–849 (2000).
Google Scholar
Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).
Source: Ecology - nature.com