World Health Organization. World malaria report 2020: 20 years of global progress and challenges. 299 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020 (2020).
Bhanot, K., Schroeder, D., Llewellyn, I., Luczak, N. & Munasinghe, T. Dengue spread information system (DSIS). In Proceedings of the 4th International Conference on Medical and Health Informatics 150–159 (Association for Computing Machinery, 2020). https://doi.org/10.1145/3418094.3418133.
Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).
Google Scholar
Carrasco, D. et al. Behavioural adaptations of mosquito vectors to insecticide control. Curr. Opin. Insect Sci. 34, 48–54 (2019).
Google Scholar
Sokhna, C., Ndiath, M. O. & Rogier, C. The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin. Microbiol. Infect. 19, 902–907 (2013).
Google Scholar
Flint, M. L. & Dreistadt, S. H. Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control Vol. 3386 (Univ of California Press, 1998).
Chandra, G., Bhattacharjee, I., Chatterjee, S. N. & Ghosh, A. Mosquito control by larvivorous fish. Indian J. Med. Res. 127, 13–27 (2008).
Google Scholar
Dambach, P. The use of aquatic predators for larval control of mosquito disease vectors: Opportunities and limitations. Biol. Control 150, 104357 (2020).
Google Scholar
Sebastian, A., Sein, M. M., Thu, M. M. & Corbet, P. S. Suppression of Aedes aegypti (Diptera: Culicidae) using augmentative release of dragonfly larvae (Odonata: Libellulidae) with community participation in Yangon, Myanmar1. Bull. Entomol. Res. 80, 223–232 (1990).
Harrington, R. W. & Harrington, E. S. Effects on fishes and their forage organisms of impounding a Florida salt marsh to prevent breeding by salt marsh mosquitoes. Bull. Mar. Sci. 32, 523–531 (1982).
Mk, D. & Rn, P. Evaluation of mosquito fish Gambusia affinis in the control of mosquito breeding in rice fields. Indian J. Malariol. 28, 171–177 (1991).
Rk, S., Rc, D. & Sp, S. Laboratory studies on the predatory potential of dragon-fly nymphs on mosquito larvae. J. Commun. Dis. 35, 96–101 (2003).
Focks, D. A., Sackett, S. R., Dame, D. A. & Bailey, D. L. Effect of weekly releases of Toxorhynchites amboinensis (Doleschall) on Aedes aegypti (L.) (Diptera: Culicidae) in New Orleans, Louisiana. J. Econ. Entomol. 78, 622–626 (1985).
Google Scholar
Brodman, R. & Dorton, R. The effectiveness of pond-breeding salamanders as agents of larval mosquito control. J. Freshw. Ecol. 21, 467–474 (2006).
Vu, S. N., Nguyen, T. Y., Kay, B. H., Marten, G. G. & Reid, J. W. Eradication of Aedes aegypti from a village in Vietnam, using copepods and community participation. Am. J. Trop. Med. Hyg. 59, 657–660 (1998).
Google Scholar
Canyon, D. V. & Hii, J. L. K. The gecko: An environmentally friendly biological agent for mosquito control. Med. Vet. Entomol. 11, 319–323 (1997).
Google Scholar
Strickman, D., Sithiprasasna, R. & Southard, D. Bionomics of the spider, Crossopriza lyoni (Araneae, Pholcidae), a predator of dengue vectors in Thailand. J. Arachnol. 25, 194–201 (1997).
Tkaczenko, G., Fischer, A. & Weterings, R. Prey preference of the common house geckos Hemidactylus frenatus and Hemidactylus platyurus. Herpetol. Notes 7, 482–488 (2014).
Weterings, R., Umponstira, C. & Buckley, H. L. Landscape variation influences trophic cascades in dengue vector food webs. Sci. Adv. 4, eaap9534 (2018).
Google Scholar
Weterings, R., Umponstira, C. & Buckley, H. L. Predation on mosquitoes by common Southeast Asian house-dwelling jumping spiders (Salticidae). Argy 16, 122–127 (2014).
Puig-Montserrat, X. et al. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. 76, 3759–3769 (2020).
Google Scholar
May, M. L. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects 10, 62 (2019).
Google Scholar
Raghavendra, K., Sharma, P. & Dash, A. P. Biological control of mosquito populations through frogs: Opportunities & constrains. Indian J. Med. Res. 128, 22–25 (2008).
Google Scholar
Poulin, B., Lefebvre, G. & Paz, L. Red flag for green spray: adverse trophic effects of Bti on breeding birds. Journal
of Applied Ecology 47, 884–889 (2010).
Korichi, R. et al. Ecological impact of trophic diet of mantids in Ghardaïa (Algerian Sahara). Ponte Int. Sci. Res. J. 72, 94–106 (2016).
Prete, F. R. The Praying Mantids (Johns Hopkins University Press, 1999).
Dyck, V. A., Hendrichs, J. & Robinson, A. S. Sterile Insect Technique: Principles And Practice In Area-Wide Integrated Pest Management (CRC Press, 2021).
Bouyer, J. & Vreysen, M. J. B. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends Parasitol. 36, 877–880 (2020).
Google Scholar
Parker, A., Vreysen, M., Bouyer, J. & Calkins, C. Sterile insect quality control/assurance. In Sterile Insect Technique: Principles And Practice In Area-Wide Integrated Pest Management 399–440 (2021).
Lees, R., Carvalho, D. O. & Bouyer, J. Potential impact of integrating the sterile insect technique into the fight against disease-transmitting mosquitoes. In Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management 2nd edn (eds Dyck, A. V. et al.) 1082–1118 (CRC Press, 2021).
Bimbilé Somda, N. S. et al. Cost-effective larval diet mixtures for mass rearing of Anopheles arabiensis Patton (Diptera: Culicidae). Parasit. Vectors 10, 619 (2017).
Google Scholar
Bimbilé Somda, N. S. B. et al. Insects to feed insects-feeding Aedes mosquitoes with flies for laboratory rearing. Sci. Rep. 9, 1–13 (2019).
Maïga, H. et al. Assessment of a novel adult mass-rearing cage for Aedes albopictus (Skuse) and Anopheles arabiensis (Patton). Insects 11, 801 (2020).
Google Scholar
Maïga, H. et al. Reducing the cost and assessing the performance of a novel adult mass-rearing cage for the dengue, chikungunya, yellow fever and Zika vector, Aedes aegypti (Linnaeus). PLOS Negl. Trop. Dis. 13, e0007775 (2019).
Google Scholar
Mamai, W. et al. Black soldier fly (Hermetia illucens) larvae powder as a larval diet ingredient for mass-rearing Aedes mosquitoes. Parasite 26, 57 (2019).
Google Scholar
Mamai, W. et al. Optimization of mass-rearing methods for Anopheles arabiensis larval stages: Effects of rearing water temperature and larval density on mosquito life-history traits. J. Econ. Entomol. 111, 2383–2390 (2018).
Google Scholar
Bellini, R., Puggioli, A., Balestrino, F., Carrieri, M. & Urbanelli, S. Exploring protandry and pupal size selection for Aedes albopictus sex separation. Parasites Vectors 11, 650 (2018).
Google Scholar
Yamada, H. et al. Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin. Malar J. 11, 208 (2012).
Google Scholar
Yamana, T. K. & Eltahir, E. A. B. Projected impacts of climate change on environmental suitability for malaria transmission in West Africa. Environ. Health Perspect. 121, 1179–1186 (2013).
Google Scholar
Zacarés, M. et al. Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species. Parasites Vectors 11, 656 (2018).
Google Scholar
Culbert, N. J., Gilles, J. R. L. & Bouyer, J. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS ONE 14, e0221822 (2019).
Google Scholar
Helinski, M. E., Parker, A. G. & Knols, B. G. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J. 5, 41 (2006).
Google Scholar
Yamada, H. et al. Identification of critical factors that significantly affect the dose-response in mosquitoes irradiated as pupae. Parasit. Vectors 12, 1–13 (2019).
Google Scholar
Culbert, N. J. et al. A rapid quality control test to foster the development of the sterile insect technique against Anopheles arabiensis. Malar. J. 19, 1–10 (2020).
Culbert, N. J. et al. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 8, 1–9 (2018).
Google Scholar
Bouyer, J. et al. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci. Robot. 5, eaba6251 (2020).
Google Scholar
Somda, N. S. B. et al. Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): Monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE 13, e0205966 (2018).
Google Scholar
Bellini, R., Medici, A., Puggioli, A., Balestrino, F. & Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J. Med. Entomol. 50, 317–325 (2013).
Google Scholar
Vavassori, L., Saddler, A. & Müller, P. Active dispersal of Aedes albopictus: A mark-release-recapture study using self-marking units. Parasites Vectors 12, 583 (2019).
Google Scholar
Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019).
Google Scholar
Dor, A. & Liedo, P. Survival ability of Mexican fruit fly males from different strains in presence of the predatory orb-weaving spider Argiope argentata (Araneae: Araneidae). Bull. Entomol. Res. 109, 279–286 (2019).
Google Scholar
Rathnayake, D. N., Lowe, E. C., Rempoulakis, P. & Herberstein, M. E. Effect of natural predators on Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) control by sterile insect technique (SIT). Pest Manag. Sci. 75, 3356–3362 (2019).
Google Scholar
Kral, K. The functional significance of mantis peering behaviour. Eur. J. Entomol. 109, 295–301 (2012).
Bond, J. G. et al. Optimization of irradiation dose to Aedes aegypti and Ae. albopictus in a sterile insect technique program. PLoS ONE 14, e0212520 (2019).
Google Scholar
Helinski, M. E., Parker, A. G. & Knols, B. G. Radiation biology of mosquitoes. Malar. J. 8, S6 (2009).
Google Scholar
Hurd, L. E. et al. Cannibalism reverses male-biased sex ratio in adult mantids: Female strategy against food limitation?. Oikos 69, 193–198 (1994).
Lawrence, S. E. Sexual cannibalism in the praying mantid, Mantis religiosa: A field study. Anim. Behav. 43, 569–583 (1992).
Trujillo-Jiménez, P., Castro-Franco, R., Zagal, M. & Corona, Y. The Asian house gecko Hemidactylus frenatus. (2018).
Tyler, M. J. On the diet and feeding habits of Hemidactylus frenatus (Dumeril and Bibron) (Reptilia:Gekkonidae) at Rangoon, Burma. Trans. R. Soc. S. Aust. 84, 45–49 (1961).
Dor, A., Valle-Mora, J., Rodríguez-Rodríguez, S. E. & Liedo, P. Predation of Anastrepha ludens (Diptera: Tephritidae) by Norops serranoi (Reptilia: Polychrotidae): Functional response and evasion ability. Environ. Entomol. 43, 706–715 (2014).
Google Scholar
Schmidt, J. M., Sebastian, P., Wilder, S. M. & Rypstra, A. L. The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS ONE 7, e49223 (2012).
Google Scholar
Turesson, H., Persson, A. & Brönmark, C. Prey size selection in piscivorous pikeperch (Stizostedion lucioperca) includes active prey choice. Ecol. Freshw. Fish 11, 223–233 (2002).
Collins, C. M., Bonds, J. A. S., Quinlan, M. M. & Mumford, J. D. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems. Med. Vet. Entomol. 33, 1 (2019).
Google Scholar
FAO/IAEA. Guidelines for mark-release-recapture procedures of Aedes mosquitoes. Version 1.0. In (eds Bouyer, J. et al.) 22 (Food and Agriculture Organization of the United Nations International Atomic Energy Agency, 2020).
Source: Ecology - nature.com