in

Adult mosquito predation and potential impact on the sterile insect technique

  • World Health Organization. World malaria report 2020: 20 years of global progress and challenges. 299 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020 (2020).

  • Bhanot, K., Schroeder, D., Llewellyn, I., Luczak, N. & Munasinghe, T. Dengue spread information system (DSIS). In Proceedings of the 4th International Conference on Medical and Health Informatics 150–159 (Association for Computing Machinery, 2020). https://doi.org/10.1145/3418094.3418133.

  • Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carrasco, D. et al. Behavioural adaptations of mosquito vectors to insecticide control. Curr. Opin. Insect Sci. 34, 48–54 (2019).

    PubMed 

    Google Scholar 

  • Sokhna, C., Ndiath, M. O. & Rogier, C. The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin. Microbiol. Infect. 19, 902–907 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Flint, M. L. & Dreistadt, S. H. Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control Vol. 3386 (Univ of California Press, 1998).

    Google Scholar 

  • Chandra, G., Bhattacharjee, I., Chatterjee, S. N. & Ghosh, A. Mosquito control by larvivorous fish. Indian J. Med. Res. 127, 13–27 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Dambach, P. The use of aquatic predators for larval control of mosquito disease vectors: Opportunities and limitations. Biol. Control 150, 104357 (2020).

    CAS 

    Google Scholar 

  • Sebastian, A., Sein, M. M., Thu, M. M. & Corbet, P. S. Suppression of Aedes aegypti (Diptera: Culicidae) using augmentative release of dragonfly larvae (Odonata: Libellulidae) with community participation in Yangon, Myanmar1. Bull. Entomol. Res. 80, 223–232 (1990).

    Google Scholar 

  • Harrington, R. W. & Harrington, E. S. Effects on fishes and their forage organisms of impounding a Florida salt marsh to prevent breeding by salt marsh mosquitoes. Bull. Mar. Sci. 32, 523–531 (1982).

    Google Scholar 

  • Mk, D. & Rn, P. Evaluation of mosquito fish Gambusia affinis in the control of mosquito breeding in rice fields. Indian J. Malariol. 28, 171–177 (1991).

    Google Scholar 

  • Rk, S., Rc, D. & Sp, S. Laboratory studies on the predatory potential of dragon-fly nymphs on mosquito larvae. J. Commun. Dis. 35, 96–101 (2003).

    Google Scholar 

  • Focks, D. A., Sackett, S. R., Dame, D. A. & Bailey, D. L. Effect of weekly releases of Toxorhynchites amboinensis (Doleschall) on Aedes aegypti (L.) (Diptera: Culicidae) in New Orleans, Louisiana. J. Econ. Entomol. 78, 622–626 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • Brodman, R. & Dorton, R. The effectiveness of pond-breeding salamanders as agents of larval mosquito control. J. Freshw. Ecol. 21, 467–474 (2006).

    Google Scholar 

  • Vu, S. N., Nguyen, T. Y., Kay, B. H., Marten, G. G. & Reid, J. W. Eradication of Aedes aegypti from a village in Vietnam, using copepods and community participation. Am. J. Trop. Med. Hyg. 59, 657–660 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Canyon, D. V. & Hii, J. L. K. The gecko: An environmentally friendly biological agent for mosquito control. Med. Vet. Entomol. 11, 319–323 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Strickman, D., Sithiprasasna, R. & Southard, D. Bionomics of the spider, Crossopriza lyoni (Araneae, Pholcidae), a predator of dengue vectors in Thailand. J. Arachnol. 25, 194–201 (1997).

    Google Scholar 

  • Tkaczenko, G., Fischer, A. & Weterings, R. Prey preference of the common house geckos Hemidactylus frenatus and Hemidactylus platyurus. Herpetol. Notes 7, 482–488 (2014).

    Google Scholar 

  • Weterings, R., Umponstira, C. & Buckley, H. L. Landscape variation influences trophic cascades in dengue vector food webs. Sci. Adv. 4, eaap9534 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weterings, R., Umponstira, C. & Buckley, H. L. Predation on mosquitoes by common Southeast Asian house-dwelling jumping spiders (Salticidae). Argy 16, 122–127 (2014).

    Google Scholar 

  • Puig-Montserrat, X. et al. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. 76, 3759–3769 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • May, M. L. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects 10, 62 (2019).

    PubMed Central 

    Google Scholar 

  • Raghavendra, K., Sharma, P. & Dash, A. P. Biological control of mosquito populations through frogs: Opportunities & constrains. Indian J. Med. Res. 128, 22–25 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Poulin, B., Lefebvre, G. & Paz, L. Red flag for green spray: adverse trophic effects of Bti on breeding birds. Journal
    of Applied Ecology
    47, 884–889 (2010).

    Google Scholar 

  • Korichi, R. et al. Ecological impact of trophic diet of mantids in Ghardaïa (Algerian Sahara). Ponte Int. Sci. Res. J. 72, 94–106 (2016).

    Google Scholar 

  • Prete, F. R. The Praying Mantids (Johns Hopkins University Press, 1999).

    Google Scholar 

  • Dyck, V. A., Hendrichs, J. & Robinson, A. S. Sterile Insect Technique: Principles And Practice In Area-Wide Integrated Pest Management (CRC Press, 2021).

    Google Scholar 

  • Bouyer, J. & Vreysen, M. J. B. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends Parasitol. 36, 877–880 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Parker, A., Vreysen, M., Bouyer, J. & Calkins, C. Sterile insect quality control/assurance. In Sterile Insect Technique: Principles And Practice In Area-Wide Integrated Pest Management 399–440 (2021).

  • Lees, R., Carvalho, D. O. & Bouyer, J. Potential impact of integrating the sterile insect technique into the fight against disease-transmitting mosquitoes. In Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management 2nd edn (eds Dyck, A. V. et al.) 1082–1118 (CRC Press, 2021).

    Google Scholar 

  • Bimbilé Somda, N. S. et al. Cost-effective larval diet mixtures for mass rearing of Anopheles arabiensis Patton (Diptera: Culicidae). Parasit. Vectors 10, 619 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bimbilé Somda, N. S. B. et al. Insects to feed insects-feeding Aedes mosquitoes with flies for laboratory rearing. Sci. Rep. 9, 1–13 (2019).

    Google Scholar 

  • Maïga, H. et al. Assessment of a novel adult mass-rearing cage for Aedes albopictus (Skuse) and Anopheles arabiensis (Patton). Insects 11, 801 (2020).

    PubMed Central 

    Google Scholar 

  • Maïga, H. et al. Reducing the cost and assessing the performance of a novel adult mass-rearing cage for the dengue, chikungunya, yellow fever and Zika vector, Aedes aegypti (Linnaeus). PLOS Negl. Trop. Dis. 13, e0007775 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mamai, W. et al. Black soldier fly (Hermetia illucens) larvae powder as a larval diet ingredient for mass-rearing Aedes mosquitoes. Parasite 26, 57 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mamai, W. et al. Optimization of mass-rearing methods for Anopheles arabiensis larval stages: Effects of rearing water temperature and larval density on mosquito life-history traits. J. Econ. Entomol. 111, 2383–2390 (2018).

    PubMed 

    Google Scholar 

  • Bellini, R., Puggioli, A., Balestrino, F., Carrieri, M. & Urbanelli, S. Exploring protandry and pupal size selection for Aedes albopictus sex separation. Parasites Vectors 11, 650 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamada, H. et al. Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin. Malar J. 11, 208 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamana, T. K. & Eltahir, E. A. B. Projected impacts of climate change on environmental suitability for malaria transmission in West Africa. Environ. Health Perspect. 121, 1179–1186 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zacarés, M. et al. Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species. Parasites Vectors 11, 656 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Culbert, N. J., Gilles, J. R. L. & Bouyer, J. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS ONE 14, e0221822 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Helinski, M. E., Parker, A. G. & Knols, B. G. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J. 5, 41 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamada, H. et al. Identification of critical factors that significantly affect the dose-response in mosquitoes irradiated as pupae. Parasit. Vectors 12, 1–13 (2019).

    CAS 

    Google Scholar 

  • Culbert, N. J. et al. A rapid quality control test to foster the development of the sterile insect technique against Anopheles arabiensis. Malar. J. 19, 1–10 (2020).

    Google Scholar 

  • Culbert, N. J. et al. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 8, 1–9 (2018).

    CAS 

    Google Scholar 

  • Bouyer, J. et al. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci. Robot. 5, eaba6251 (2020).

    PubMed 

    Google Scholar 

  • Somda, N. S. B. et al. Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): Monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE 13, e0205966 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bellini, R., Medici, A., Puggioli, A., Balestrino, F. & Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J. Med. Entomol. 50, 317–325 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Vavassori, L., Saddler, A. & Müller, P. Active dispersal of Aedes albopictus: A mark-release-recapture study using self-marking units. Parasites Vectors 12, 583 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Dor, A. & Liedo, P. Survival ability of Mexican fruit fly males from different strains in presence of the predatory orb-weaving spider Argiope argentata (Araneae: Araneidae). Bull. Entomol. Res. 109, 279–286 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Rathnayake, D. N., Lowe, E. C., Rempoulakis, P. & Herberstein, M. E. Effect of natural predators on Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) control by sterile insect technique (SIT). Pest Manag. Sci. 75, 3356–3362 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Kral, K. The functional significance of mantis peering behaviour. Eur. J. Entomol. 109, 295–301 (2012).

    Google Scholar 

  • Bond, J. G. et al. Optimization of irradiation dose to Aedes aegypti and Ae. albopictus in a sterile insect technique program. PLoS ONE 14, e0212520 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Helinski, M. E., Parker, A. G. & Knols, B. G. Radiation biology of mosquitoes. Malar. J. 8, S6 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hurd, L. E. et al. Cannibalism reverses male-biased sex ratio in adult mantids: Female strategy against food limitation?. Oikos 69, 193–198 (1994).

    Google Scholar 

  • Lawrence, S. E. Sexual cannibalism in the praying mantid, Mantis religiosa: A field study. Anim. Behav. 43, 569–583 (1992).

    Google Scholar 

  • Trujillo-Jiménez, P., Castro-Franco, R., Zagal, M. & Corona, Y. The Asian house gecko Hemidactylus frenatus. (2018).

  • Tyler, M. J. On the diet and feeding habits of Hemidactylus frenatus (Dumeril and Bibron) (Reptilia:Gekkonidae) at Rangoon, Burma. Trans. R. Soc. S. Aust. 84, 45–49 (1961).

    Google Scholar 

  • Dor, A., Valle-Mora, J., Rodríguez-Rodríguez, S. E. & Liedo, P. Predation of Anastrepha ludens (Diptera: Tephritidae) by Norops serranoi (Reptilia: Polychrotidae): Functional response and evasion ability. Environ. Entomol. 43, 706–715 (2014).

    PubMed 

    Google Scholar 

  • Schmidt, J. M., Sebastian, P., Wilder, S. M. & Rypstra, A. L. The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS ONE 7, e49223 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turesson, H., Persson, A. & Brönmark, C. Prey size selection in piscivorous pikeperch (Stizostedion lucioperca) includes active prey choice. Ecol. Freshw. Fish 11, 223–233 (2002).

    Google Scholar 

  • Collins, C. M., Bonds, J. A. S., Quinlan, M. M. & Mumford, J. D. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems. Med. Vet. Entomol. 33, 1 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • FAO/IAEA. Guidelines for mark-release-recapture procedures of Aedes mosquitoes. Version 1.0. In (eds Bouyer, J. et al.) 22 (Food and Agriculture Organization of the United Nations International Atomic Energy Agency, 2020).


  • Source: Ecology - nature.com

    Solar-powered system offers a route to inexpensive desalination

    Nurturing human communities and natural ecosystems