in

Forest fragmentation impacts the seasonality of Amazonian evergreen canopies

  • Peñuelas, J., Rutishauser, T. & Filella, I. Ecology. Phenology feedbacks on climate change. Science 324, 887–888 (2009).

    PubMed 

    Google Scholar 

  • Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. Meteorol. 169, 156–173 (2013).

    Google Scholar 

  • Wu, J. et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351, 972–976 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wright, J. S. et al. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA 114, 8481–8486 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA 111, 16041–16046 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Girardin, C. A. J. et al. Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation. Glob. Biogeochem. Cycles 30, 700–715 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Maeda, E. E. et al. Consistency of vegetation index seasonality across the Amazon rainforest. Int. J. Appl. Earth Obs. Geoinf. 52, 42–53 (2016).

    ADS 

    Google Scholar 

  • Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016). vol.

    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. et al. Vapor pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across amazonian evergreen broadleaved forest. Global Biogeochem. Cycles https://doi.org/10.13140/2.1.5019.5520 (2021).

  • Hashimoto, H. et al. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun. 12, 684 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brando, P. M. et al. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc. Natl. Acad. Sci. USA 107, 14685–14690 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J. et al. Seasonality of Central Amazon forest leaf flush using tower-mounted RGB camera. In AGU Fall Meeting https://doi.org/10.13140/2.1.5019.5520 (2014).

  • Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025583 (2006).

  • Restrepo-Coupe, N. et al. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. Meteorol. 182-183, 128–144 (2013).

    Google Scholar 

  • Manoli, G., Ivanov, V. Y. & Fatichi, S. Dry-season greening and water stress in Amazonia: the role of modeling leaf phenology. J. Geophys. Res. Biogeosci. 123, 1909–1926 (2018).

    Google Scholar 

  • Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Lopes, A. P. et al. Leaf flush drives dry season green-up of the Central Amazon. Remote Sens. Environ. 182, 90–98 (2016).

    ADS 

    Google Scholar 

  • Smith, M. N. et al. Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest. N. Phytol. 222, 1284–1297 (2019).

    Google Scholar 

  • Mitchell Aide, T. Herbivory as a selective agent on the timing of leaf production in a tropical understory community. Nature 336, 574–575 (1988).

    Google Scholar 

  • Myneni, R. B. et al. Large seasonal swings in leaf area of Amazon rainforests. Proc. Natl. Acad. Sci. USA 104, 4820–4823 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J. et al. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Glob. Chang. Biol. 23, 1240–1257 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Nunes, M. H. et al. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño. Nat. Commun. 12, 1526 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vasconcelos, H. L. & Luizão, F. J. Litter production and litter nutrient concentrations in a fragmented Amazonian landscape. Ecol. Appl. 14, 884–892 (2004).

    Google Scholar 

  • Laurance, W. F. et al. Rain forest fragmentation and the proliferation of successional trees. Ecology 87, 469–482 (2006).

    PubMed 

    Google Scholar 

  • Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).

    Google Scholar 

  • Ewers, R. M. & Banks-Leite, C. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS One 8, e58093 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).

    ADS 

    Google Scholar 

  • Barros, F. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. N. Phytol. 223, 1253–1266 (2019).

    CAS 

    Google Scholar 

  • Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J. Ecol. 107, 318–333 (2019).

    Google Scholar 

  • Signori-Müller, C. et al. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nat. Commun. 12, 2310 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coelho de Souza, F. et al. Evolutionary heritage influences Amazon tree ecology. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2016.1587 (2016).

  • Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morton, D. C. et al. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506, 221–224 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Draper, F. C. et al. Amazon tree dominance across forest strata. Nat. Ecol. Evol. 5, 757–767 (2020).

    Google Scholar 

  • Calders, K. et al. Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurements. Agric. Meteorol. 203, 158–168 (2015).

    Google Scholar 

  • Disney, M. Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. N. Phytol. 222, 1736–1741 (2019).

    Google Scholar 

  • Tang, H. & Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl. Acad. Sci. USA 114, 2640–2644 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laurance, W. F. et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biol. Rev. Camb. Philos. Soc. 93, 223–247 (2018).

    PubMed 

    Google Scholar 

  • Correction for Tang and Dubayah, Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl. Acad. Sci. USA 116, 9137 (2019).

  • Ma, L. et al. Characterizing the three-dimensional spatiotemporal variation of forest photosynthetically active radiation using terrestrial laser scanning data. Agric. Meteorol. 301-302, 108346 (2021).

    Google Scholar 

  • Laurans, M., Hérault, B., Vieilledent, G. & Vincent, G. Vertical stratification reduces competition for light in dense tropical forests. Ecol. Manag. 329, 79–88 (2014).

    Google Scholar 

  • Garcia, M. N. et al. Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in Central Amazon. Oecologia https://doi.org/10.1007/s00442-021-04924-9 (2021).

  • Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Brando, P. Tree height matters. Nat. Geosci. 11, 390–391 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Stark, S. C. et al. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett. 15, 1406–1414 (2012).

    PubMed 

    Google Scholar 

  • Pyle, E. H. et al. Dynamics of carbon, biomass, and structure in two Amazonian forests. J. Geophys. Res. https://doi.org/10.1029/2007JG000592 (2008).

  • Gorgens, E. B. et al. Resource availability and disturbance shape maximum tree height across the Amazon. Glob. Chang. Biol. 27, 177–189 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • Oliveira, R. S. et al. Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. N. Phytol. 230, 904–923 (2021).

    Google Scholar 

  • Falster, D. S. & Westoby, M. Leaf size and angle vary widely across species: what consequences for light interception? N. Phytol. 158, 509–525 (2003).

    Google Scholar 

  • Chavana-Bryant, C. et al. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. N. Phytol. 214, 1049–1063 (2017).

    CAS 

    Google Scholar 

  • Brando, P. M. et al. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1839–1848 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, D., Momo Takoudjou, S. & Casella, E. LeWoS: a universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR. Methods Ecol. Evol. 11, 376–389 (2020).

    Google Scholar 

  • Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).

    Google Scholar 

  • Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. 9, 384–388 (2019).

    ADS 

    Google Scholar 

  • Lohbeck, M. et al. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94, 1211–1216 (2013).

    PubMed 

    Google Scholar 

  • Lambers, H. & Oliveira, R. S. in Plant Physiological Ecology (eds. Lambers, H. & Oliveira, R. S.) 385–449 (Springer International Publishing, 2019).

  • Reich, P. B. Key canopy traits drive forest productivity. Proc. Biol. Sci. 279, 2128–2134 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Albiero-Júnior, A., Venegas-González, A., Camargo, J. L. C., Roig, F. A. & Tomazello-Filho, M. Amazon forest fragmentation and edge effects temporarily favored understory and midstory tree growth. Trees https://doi.org/10.1007/s00468-021-02172-1 (2021).

  • Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • San-José, M., Werden, L., Peterson, C. J., Oviedo-Brenes, F. & Zahawi, R. A. Large tree mortality leads to major aboveground biomass decline in a tropical forest reserve. Oecologia https://doi.org/10.1007/s00442-021-05048-w (2021).

  • Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Chang. 11, 442–448 (2021).

  • Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA 112, 13172–13177 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silva Junior, C. H. L. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).

  • Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3101–3112 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, J. Y. et al. Quantifying leaf phenology of individual trees and species in a tropical forest using unmanned aerial vehicle (UAV) images. Remote Sens. 11, 1534 (2019).

    ADS 

    Google Scholar 

  • Dubayah, R. et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Egypt. J. Remote Sens. Space Sci. 1, 100002 (2020).

    Google Scholar 

  • Coomes, D. A. et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens. Environ. 194, 77–88 (2017).

    ADS 

    Google Scholar 

  • Calders, K. et al. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sens. Environ. 251, 112102 (2020).

    ADS 

    Google Scholar 

  • Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. USA 113, 10759–10768 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Almeida, D. R. A. et al. Persistent effects of fragmentation on tropical rainforest canopy structure after 20 yr of isolation. Ecol. Appl. 29, e01952 (2019).

    PubMed 

    Google Scholar 

  • Wilkes, P. et al. Data acquisition considerations for terrestrial laser scanning of forest plots. Remote Sens. Environ. 196, 140–153 (2017).

    ADS 

    Google Scholar 

  • Vincent, G. et al. Mapping plant area index of tropical evergreen forest by airborne laser scanning. A cross-validation study using LAI2200 optical sensor. Remote Sens. Environ. 198, 254–266 (2017).

    ADS 

    Google Scholar 

  • Pimont, F., Allard, D., Soma, M. & Dupuy, J.-L. Estimators and confidence intervals for plant area density at voxel scale with T-LiDAR. Remote Sens. Environ. 215, 343–370 (2018).

    ADS 

    Google Scholar 

  • Vincent, G., Pimont, F. & Verley, P. A note on PAD/LAD Estimators Implemented in AMAPVox 1.7.https://doi.org/10.23708/1AJNMP (2021)

  • Ross, J. The radiation regime and architecture of plant stands (Springer, 1981).

  • Béland, M., Widlowski, J.-L., Fournier, R. A., Côté, J.-F. & Verstraete, M. M. Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements. Agric. Meteorol. 151, 1252–1266 (2011).

    Google Scholar 

  • Almeida, D. R. Ade et al. Optimizing the remote detection of tropical rainforest structure with airborne LiDAR: leaf area profile sensitivity to pulse density and spatial sampling. Remote Sens. 11, 92 (2019).

    ADS 

    Google Scholar 

  • Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Росс, Ю. & Ross, J. The radiation regime and architecture of plant stands (Springer Science & Business Media, 1981).

  • Berry, Z. C. & Goldsmith, G. R. Diffuse light and wetting differentially affect tropical tree leaf photosynthesis. N. Phytol. 225, 143–153 (2020).

    CAS 

    Google Scholar 

  • Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • USGS. LP DAAC—MCD18A1. https://lpdaac.usgs.gov/products/mcd18a1v006/ (2008).

  • Maeda, E. E. et al. Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. Proc. Natl. Acad. Sci. USA 118, e2023787118 (2021).

  • Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wild, J. et al. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric. Meteorol. 268, 40–47 (2019).

    Google Scholar 

  • Camargo, J. L. C. & Kapos, V. Complex edge effects on oil moisture and microclimate in Central Amazonian forest. J. Trop. Ecol. 11, 205–221 (1995).

    Google Scholar 

  • Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).

  • Malhi, Y., Phillips, O. L. & Laurance, W. F. Forest-climate interactions in fragmented tropical landscapes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 345–352 (2004).

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: The future of international education

    Advancing public understanding of sea-level rise