in

Morpho-physiological adaptations of Leptocylindrus aporus and L. hargravesii to phosphate limitation in the northern Adriatic

  • Nanjappa, D., Kooistra, W. H. & Zingone, A. A reappraisal of the genus Leptocylindrus (B acillariophyta), with the addition of three species and the erection of Tenuicylindrus gen. nov. J. Phycol. 49, 917–936 (2013).

    Article 

    Google Scholar 

  • Hasle, G. & Syvertsen, E. (Academic Press, 1997).

  • Gómez, F., Simão, T. L., Utz, L. R. & Lopes, R. M. The nature of the diatom Leptocylindrus mediterraneus (Bacillariophyceae), host of the enigmatic symbiosis with the stramenopile Solenicola setigera. Phycologia 55, 265–273 (2016).

    Article 

    Google Scholar 

  • Ivančić, I. et al. Survival mechanisms of phytoplankton in conditions of stratification-induced deprivation of orthophosphate: Northern Adriatic case study. Limnol. Oceanogr. https://doi.org/10.4319/lo.2012.57.6.0000 (2012).

    Article 

    Google Scholar 

  • Ivančić, I. et al. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions. Prog. Oceanogr. 146, 175–186. https://doi.org/10.1016/j.pocean.2016.07.003 (2016).

    ADS 
    Article 

    Google Scholar 

  • Smodlaka, N. Primary production of the organic matter as an indicator of the eutrophication in the northern Adriatic sea. Sci. Total Environ. 56, 211–220. https://doi.org/10.1016/0048-9697(86)90325-6 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Degobbis, D. & Gilmartin, M. Nitrogen, phosphorus, and biogenic silicon budgets for the northern Adriatic Sea. Oceanol. Acta 13, 31–45 (1990).

    CAS 

    Google Scholar 

  • Zavatarelli, M., Raicich, F., Bregant, D., Russo, A. & Artegiani, A. Climatological biogeochemical characteristics of the Adriatic Sea. J. Mar. Syst. 18, 227–263 (1998).

    Article 

    Google Scholar 

  • Socal, G. et al. Hydrological and biogeochemical features of the Northern Adriatic Sea in the period 2003–2006. Mar. Ecol. 29, 449–468. https://doi.org/10.1111/J.1439-0485.2008.00266.X (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Giani, M. et al. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf Sci. 115, 1–13. https://doi.org/10.1016/j.ecss.2012.08.023 (2012).

    ADS 
    Article 

    Google Scholar 

  • Marić, D. et al. Phytoplankton response to climatic and anthropogenic influences in the north-eastern Adriatic during the last four decades. Estuar. Coast. Shelf Sci. 115, 98–112. https://doi.org/10.1016/J.Ecss.2012.02.003 (2012).

    ADS 
    Article 

    Google Scholar 

  • Smodlaka Tanković, M. et al. Insights into the life strategy of the common marine diatom Chaetoceros peruvianus Brightwell. PLoS ONE 13, e0203634 (2018).

    Article 

    Google Scholar 

  • Marić Pfannkuchen, D. et al. The ecology of one cosmopolitan, one newly introduced and one occasionally advected species from the genus Skeletonema in a highly structured ecosystem, the northern Adriatic. Microb. Ecol. 75, 674–687 (2018).

    Article 

    Google Scholar 

  • Benitez-Nelson, C. R. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 51, 109–135 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 107, 563–576 (2007).

    CAS 
    Article 

    Google Scholar 

  • Price, N. M. & Morel, F. M. Role of extracellular enzymatic reactions in natural waters. (1990).

  • Hoppe, H.-G. Phosphatase activity in the sea. Hydrobiologia 493, 187–200 (2003).

    CAS 
    Article 

    Google Scholar 

  • Fields, M. W. et al. Sources and resources: Importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl. Microbiol. Biotechnol. 98, 4805–4816 (2014).

    CAS 
    Article 

    Google Scholar 

  • Van Mooy, B. A. S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458, 69–72 (2009).

    ADS 
    Article 

    Google Scholar 

  • Gašparović, B. et al. Adaptation of marine plankton to environmental stress by glycolipid accumulation. Mar. Environ. Res. 92, 120–132. https://doi.org/10.1016/J.Marenvres.2013.09.009 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Gašparović, B. et al. Factors influencing particulate lipid production in the East Atlantic Ocean. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 89, 56–67. https://doi.org/10.1016/j.dsr.2014.04.005 (2014).

    CAS 
    Article 

    Google Scholar 

  • Finenko, Z. & Krupatkina-Akinina, D. Effect of inorganic phosphorus on the growth rate of diatoms. Mar. Biol. 26, 193–201 (1974).

    CAS 
    Article 

    Google Scholar 

  • Lombardi, A. & Wangersky, P. Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar. Ecol. Prog. Ser. Oldendorf 77, 39–47 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pan, Y., Subba Rao, D. V. & Mann, K. H. Changes in domoic acid production and cellular chemical composition of the toxigenic diatom Pseudo-nitzschia miltiseries under phosphate limitation. J. Phycol. 32, 371–381 (1996).

    CAS 
    Article 

    Google Scholar 

  • Liu, S., Guo, Z., Li, T., Huang, H. & Lin, S. Photosynthetic efficiency, cell volume, and elemental stoichiometric ratios in Thalassirosira weissflogii under phosphorus limitation. Chin. J. Oceanol. Limnol. 29, 1048 (2011).

    CAS 
    Article 

    Google Scholar 

  • Alipanah, L. et al. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLoS ONE 13, e0193335 (2018).

    Article 

    Google Scholar 

  • Guillard, R. R. L. in Culture of Marine Invertebrate Animals (eds W.L. Smith & M.H. Chanley) 29–60 (Plenum Press, New York, USA, 1975).

  • Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen des Internationale Vereinigung für theoretische und angewandte Limnologie 9, 1–38 (1958).

    Google Scholar 

  • Keller, M. D., Bellows, W. K. & Guillard, R. R. L. Microwave treatment for sterilization of phytoplankton culture media. J. Exp. Mar. Biol. Ecol. 117, 279–283. https://doi.org/10.1016/0022-0981(88)90063-9 (1988).

    Article 

    Google Scholar 

  • Gračan, R., Mladineo, I., Kučinić, M., Lazar, B. & Lacković, G. Gastrointestinal helminth community of loggerhead sea turtle Caretta caretta in the Adriatic Sea. Dis. Aquat. Org. 99, 227–236 (2012).

    Article 

    Google Scholar 

  • Anonymous, X. Proposals for a standardization of diatom terminology and diagnoses. Nova Hedwig. Beih. 53, 323–354 (1975).

    Google Scholar 

  • Ross, R. et al. An amended terminology for the siliceous components of the diatom cell. (1979).

  • Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).

    Article 

    Google Scholar 

  • Alverson, A. J. Molecular systematics and the diatom species. Protist 159, 339 (2008).

    Article 

    Google Scholar 

  • Macgillivary, M. & Kaczmarska, I. Survey of the Efficacy of a Short Fragment of the rbcL Gene as a Supplemental DNA Barcode for Diatoms. Vol. 58 (2011).

  • Zimmermann, J., Jahn, R. & Gemeinholzer, B. Barcoding diatoms: Evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org. Divers. Evol. 11, 173–192 (2011).

    Article 

    Google Scholar 

  • Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).

    Article 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    Article 

    Google Scholar 

  • Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).

    CAS 
    Article 

    Google Scholar 

  • Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS 
    Article 

    Google Scholar 

  • Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PLoS ONE 10, e0146021. https://doi.org/10.1371/journal.pone.0146021 (2016).

    CAS 
    Article 

    Google Scholar 

  • Lomas, M. W., Swain, A., Shelton, R. & Ammerman, J. W. Taxonomic variability of phosphorus stress in Sargasso Sea phytoplankton. Limnol. Oceanogr. 49, 2303–2310 (2004).

    ADS 
    Article 

    Google Scholar 

  • Yamaguchi, H., Yamaguchi, M. & Adachi, M. Specific-detection of alkaline phosphatase activity in individual species of marine phytoplankton. Plankon Benthos Res. 1, 2014–2217 (2006).

    Article 

    Google Scholar 

  • Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Snalysis. (Fisheries Resrach Board of Canada, 1972).

  • Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37, 911–917 (1959).

    CAS 
    Article 

    Google Scholar 

  • Gašparović, B., Kazazić, S. P., Cvitešić, A., Penezić, A. & Frka, S. Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography–flame ionization detection. J. Chromatogr. A 1409, 259–267 (2015).

    Article 

    Google Scholar 

  • Gašparović, B., Kazazić, S. P., Cvitešić, A., Penezić, A. & Frka, S. Corrigendum to “Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography–flame ionization detection”[J. Chromatogr. A 1409 (2015) 259–267]. (2017).

  • Fonda Umani, S. et al. Inter-annual variations of planktonic food webs in the northern Adriatic Sea. Sci. Total Environ. 353, 218–231. https://doi.org/10.1016/j.scitotenv.2005.09.016 (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2015).

  • Sprouffske, K. & Wagner, A. Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 17, 172. https://doi.org/10.1186/s12859-016-1016-7 (2016).

    Article 

    Google Scholar 

  • Schlitzer, R. Ocean Data View. http://odv.awi.de (2018).

  • Smodlaka Tanković, M. et al. Experimental evidence for shaping and bloom inducing effects of decapod larvae of Xantho poressa (Olivi, 1792) on marine phytoplankton. J. Mar. Biol. Assoc. United Kingdom 98, 1881–1887 (2018).

    Article 

    Google Scholar 

  • Dyhrman, S. T. et al. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS ONE 7, e33768 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Novak, T. et al. Global warming and oligotrophication lead to increased lipid production in marine phytoplankton. Sci Total Environ 668, 171–183 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Martin, P., Van Mooy, B. A., Heithoff, A. & Dyhrman, S. T. Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME J. 5, 1057–1060 (2011).

    CAS 
    Article 

    Google Scholar 

  • Abida, H. et al. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol. 167, 118–136 (2015).

    CAS 
    Article 

    Google Scholar 

  • Ivančić, I. & Degobbis, D. Mechanisms of production and fate of organic phosphorus in the northern Adriatic Sea. Mar. Biol. 94, 117–125 (1987).

    Article 

    Google Scholar 

  • Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hutchinson, G. E. The paradox of the plankton. Am Nat 95, 137–145 (1961).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: The future of international education

    Advancing public understanding of sea-level rise