in

Probing the antioxidant activity of functional proteins and bioactive peptides in Hermetia illucens larvae fed with food wastes

  • Ebner, J., Babbitt, C., Winer, M., Hilton, B. & Williamson, A. Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products. Appl. Energy 130, 86–93 (2014).

    CAS 

    Google Scholar 

  • Tonini, D., Albizzati, P. F. & Astrup, T. F. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag. 76, 744 (2018).

    PubMed 

    Google Scholar 

  • Sze, E., Yau, Y. H. & Wu, K. C. Application of anaerobic bacterial ammonification pretreatment to microalgal food waste leachate cultivation and biofuel production. Mar. Pollut. Bull. 153, 111007 (2020).

    PubMed 

    Google Scholar 

  • Winkel, T. D., Wahlen, S. & Jensen, T. in Nordic Conference on Consumer Research.

  • Wang, P. et al. Effects of graphite, graphene, and graphene oxide on the anaerobic co-digestion of sewage sludge and food waste: attention to methane production and the fate of antibiotic resistance genes. Bioresour. Technol. 339, 125585 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Gianico, A., Gallipoli, A., Pagliaccia, P. & Braguglia, C. M. Anaerobic bioconversion of food waste into energy: A critical review (2013).

  • Smetana, S., Ites, S., Parniakov, O., Aganovic, K. & Heinz, V. in 71st Annual Meeting of the European Federation of Animal Science.

  • Ojha, S., Buler, S. & Schlüter, O. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 118, 600–609 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Scala, A. et al. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 10, 1–8 (2020).

    ADS 

    Google Scholar 

  • McDonald, C., Campbell, K. A., Benson, C., Davis, M. J. & Frost, C. J. Workforce development and multiagency collaborations: a presentation of two case studies in child welfare. Sustainability 13, 10190 (2021).

    Google Scholar 

  • Kim, C.-H. et al. Use of black soldier fly larvae for food waste treatment and energy production in asian countries: a review. Processes 9, 161 (2021).

    CAS 

    Google Scholar 

  • Julita, U., Fitri, L., Putra, R. & Permana, A. Mating success and reproductive behavior of black soldier fly Hermetia illucens L. (diptera, stra-tiomyidae) in tropics. J. Ento-mol. 17, 117–127 (2020).

    CAS 

    Google Scholar 

  • Rehman, K. U. et al. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod. 154, 366–373 (2017).

    CAS 

    Google Scholar 

  • Li, Q., Zheng, L., Hao, C., Garza, E. & Zhou, S. From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel 90, 1545–1548 (2011).

    CAS 

    Google Scholar 

  • Köhler, R., Kariuki, L., Lambert, C. & Biesalski, H. K. Protein, amino acid and mineral composition of some edible insects from Thailand. J. Asia Pac. Entomol. 22, 372–378 (2019).

    Google Scholar 

  • Belghit, I. et al. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture (2018).

  • Moretta, A. et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol. 11, 453 (2021).

    Google Scholar 

  • Manniello, M. et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 89, 1–24 (2021).

    Google Scholar 

  • Henriques, B. S., Garcia, E. S., Azambuja, P. & Genta, F. A. Determination of chitin content in insects: an alternate method based on calcofluor staining. Front. Physiol. 11, ARTN 11710.3389/fphys.2020.00117 (2020).

  • Hbl, M., Mráz, P., Ipo, J., Hotiková, I. & Kopec, T. Polyphenols as food supplement improved food consumption and longevity of honey bees (Apis mellifera) intoxicated by pesticide thiacloprid. Insects 12 (2021).

  • Li, H., Dai, C., Zhu, Y. & Hu, Y. Larvae crowding increases development rate, improves disease resistance, and induces expression of antioxidant enzymes and heat shock proteins in Mythimna separata (Lepidoptera: Noetuidae). J. Econ. Entomol. 4 (2021).

  • Hao, et al. Effects of enzymatic hydrolysis assisted by high hydrostatic pressure processing on the hydrolysis and allergenicity of proteins from ginkgo seeds. Food Bioprocess Technol. 9, 839–848 (2016).

    Google Scholar 

  • Nadeem, M., Mumtaz, M. W., Danish, M., Rashid, U. & Raza, S. A. Calotropis procera: UHPLC-QTOF-MS/MS based profiling of bioactives, antioxidant and anti-diabetic potential of leaf extracts and an insight into molecular docking. J. Food Meas. Charact. 13, 3206–3220 (2019).

    Google Scholar 

  • Altomare, A. A., Baron, G., Aldini, G., Carini, M. & D’Amato, A. Silkworm pupae as source of high-value edible proteins and of bioactive peptides. Food Sci. Nutr. 8, 2652–2661 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zielińska, E., Baraniak, B. & Karaś, M. Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria). Int. J. Food Sci. Technol. 53, 2542–2551 (2018).

    Google Scholar 

  • Sousa, P., Borges, S. & Pintado, M. Enzymatic hydrolysis of insect Alphitobius diaperinus towards the development of bioactive peptide hydrolysates. Food Funct. 11, 3539–3548 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Jakubczyk, A., Karaś, M., Rybczyńska-Tkaczyk, K., Zielińska, E. & Zieliński, D. Current trends of bioactive peptides—New sources and therapeutic effect. Foods 9, 846 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Li, K., Li, X.-M., Ji, N.-Y. & Wang, B.-G. Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): structural elucidation and DPPH radical-scavenging activity. Bioorg. Med. Chem. 15, 6627–6631 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • He, R., Girgih, A. T., Malomo, S. A., Ju, X. R. & Aluko, R. E. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J. Funct. Foods 5, 219–227. https://doi.org/10.1016/j.jff.2012.10.008 (2013).

    CAS 
    Article 

    Google Scholar 

  • Cui, Q., Sun, Y. X., Cheng, J. J. & Guo, M. R. Effect of two-step enzymatic hydrolysis on the antioxidant properties and proteomics of hydrolysates of milk protein concentrate. Food Chem. 366, 10. https://doi.org/10.1016/j.foodchem.2021.130711 (2022).

    CAS 
    Article 

    Google Scholar 

  • Liu, Y., Wan, S., Liu, J., Zou, Y. & Liao, S. Antioxidant activity and stability study of peptides from enzymatically hydrolyzed male silkmoth. J. Food Process. Preserv. 41 (2017).

  • Carrasco-Castilla, J. et al. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chem. 135, 1789–1795 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Phongthai, S., D’Amico, S., Schoenlechner, R., Homthawornchoo, W. & Rawdkuen, S. Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem. 240, 156 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, S. J. et al. Antioxidant activity of a novel synthetic hexa-peptide derived from an enzymatic hydrolysate of duck skin by-products. Food Chem. Toxicol. 62, 276–280 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 20, 2407 (2019).

    PubMed Central 

    Google Scholar 

  • Xiang, Q., Yu, J. & Wong, P. K. Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J. Colloid Interface Sci. 357, 163–167 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Optimizing oxygen functional groups in graphene quantum dots for improved antioxidant mechanism. Phys. Chem. Chem. Phys. 21, 1336–1343 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Arise, A. K. et al. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions. Food Funct. 7, 2431–2437. https://doi.org/10.1039/c6fo00057f (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ren, J. et al. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 108, 727–736. https://doi.org/10.1016/j.foodchem.2007.11.010 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhang, C., Wei, X., Omenn, G. S. & Zhang, Y. Structure and protein interaction-based gene ontology annotations reveal likely functions of uncharacterized proteins on human chromosome 17. 17 (2018).

  • Long, C. N. et al. High-level production of Monascus pigments in Monascus ruber CICC41233 through ATP-citrate lyase overexpression. Biochem. Eng. J. 146, 160–169. https://doi.org/10.1016/j.bej.2019.03.007 (2019).

    CAS 
    Article 

    Google Scholar 

  • Brito Querido, J. et al. The cryo-EM structure of a novel 40S kinetoplastid-specific ribosomal protein. Structure 25, 1785–1794 e1783. https://doi.org/10.1016/j.str.2017.09.014 (2017).

  • Hamey, J. J. & Wilkins, M. R. Methylation of elongation factor 1A: Where, who, and why?. Trends Biochem. Sci. 43, 211–223. https://doi.org/10.1016/j.tibs.2018.01.004 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kuo, C. P. et al. Analysis of the immune response of human dendritic cells to Mycobacterium tuberculosis by quantitative proteomics. Proteome Sci. 14, 1–11 (2016).

    Google Scholar 

  • Zhu, J. et al. Expression and RNA interference of ribosomal protein L5 gene in Nilaparvata lugens (Hemiptera: Delphacidae). J. Insect. Sci. 3 (2017).

  • Teng, T., Mercer, C. A., Hexley, P., Thomas, G. & Fumagalli, S. Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol. Cell. Biol. 33, 4660–4671. https://doi.org/10.1128/mcb.01174-13 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rittschof, C. C. & Schirmeier, S. Insect models of central nervous system energy metabolism and its links to behavior. Glia (2017).

  • Alar, A. F., Akr, B. & Gülseren, I. LC-Q-TOF/MS based identification and in silico verification of ACE-inhibitory peptides in Giresun (Turkey) hazelnut cakes. Eur. Food Res. Technol. (2021).

  • Shang, W. H. et al. In silico assessment and structural characterization of antioxidant peptides from major yolk protein of sea urchin Strongylocentrotus nudus. Food Funct. 9, 6435–6443 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Ajibola, C. F., Fashakin, J. B., Fagbemi, T. N. & Aluko, R. E. Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int. J. Mol. Sci. 12, 6685–6702 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H. et al. Enhancing the antioxidative effects of foods containing rutin and α-amino acids via the Maillard reaction: A model study focusing on rutin-lysine system. J. Food Biochem. 44, e13086 (2020).

    PubMed 

    Google Scholar 

  • Tsopmo, A. et al. Tryptophan released from mother’s milk has antioxidant properties. Pediatr. Res. 66, 614–618 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, Z. et al. Identification and molecular docking study of fish roe-derived peptides as potent BACE 1, AChE, and BChE inhibitors. Food Funct. 11 (2020).

  • Li, C. et al. Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri. Fish Shellf. Immunol. 22, 663–672 (2007).

    Google Scholar 

  • Arockiaraj, J. et al. An unconventional antimicrobial protein histone from freshwater prawn Macrobrachium rosenbergii: analysis of immune properties. Fish Shellfish Immunol. 35, 1511–1522 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Ju, J. et al. Major components in Lilac and Litsea cubeba essential oils kill Penicillium roqueforti through mitochondrial apoptosis pathway. Ind. Crops Products 149, 112349 (2020).

    CAS 

    Google Scholar 

  • Al-Dhafri, K., Chai, L. C. & Karsani, S. A. Purification and characterization of antimicrobial peptide fractions of Junipers seravschanica. Biocatal. Agric. Biotechnol. 28, 101554 (2020).

    Google Scholar 

  • Ratnakomala, S., Ridwan, R., Lisdiyanti, P., Abinawanto, A. & Andi, U. Screening of actinomycetes producing an ATPase inhibitor of japanese encephalitis virus RNA helicase from soil and leaf litter samples. Microbiol. Indonesia 5, 15–20 (2011).

    Google Scholar 

  • Zhao, X., Zhang, J. & Zhu, K. Y. Chito-protein matrices in arthropod exoskeletons and peritrophic matrices (2019).

  • Pustylnikov, S., Sagar, D., Jain, P. & Khan, Z. K. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. J. Pharm. Pharm. Sci. 17 (2014).

  • Kiew, P. L. & Don, M. M. Jewel of the seabed: sea cucumbers as nutritional and drug candidates. Int. J. Food Sci. Nutr. 63, 616–636 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z., Su, Y. & Zeng, M. Amino acid composition and functional properties of giant red sea cucumber (Parastichopus californicus) collagen hydrolysates. J. Ocean Univ. China 10, 80–84 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Zaky, A. A., Liu, Y., Han, P., Chen, Z. & Jia, Y. Effect of pepsin–trypsin in vitro gastro-intestinal digestion on the antioxidant capacities of ultra-filtrated rice bran protein hydrolysates (molecular weight > 10 kDa; 3–10 kDa, and< 3 kDa). Int. J. Pept. Res. Ther. 1–7 (2019).

  • Kim, S.-B., Yoon, N. Y., Shim, K.-B. & Lim, C.-W. Antioxidant and angiotensin I-converting enzyme inhibitory activities of northern shrimp (Pandalus borealis) by-products hydrolysate by enzymatic hydrolysis. Fish. Aquat. Sci. 19, 1–6 (2016).

    Google Scholar 

  • Chung, Y. C., Chang, C. T., Chao, W. W., Lin, C. F. & Chou, S. T. Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 50, 2454–2458. https://doi.org/10.1021/jf011369q (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zielińska, E., BaRaniak, B. & Karaś, M. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 9, 1–14 (2017).

    Google Scholar 

  • Rahman, M. M., Byanju, B., Grewell, D. & Lamsal, B. P. High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrason. Sonochem. 64, 105019 (2020).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Advancing public understanding of sea-level rise

    Degradation of 2,6-dicholorophenol by Trichoderma longibraciatum Isolated from an industrial Soil Sample in Dammam, Saudi Arabia