in

Degradation of 2,6-dicholorophenol by Trichoderma longibraciatum Isolated from an industrial Soil Sample in Dammam, Saudi Arabia

  • Arora, P. K. & Bae, H. Bacterial degradation of chlorophenols and their derivatives. Microb. Cell Fact. 13, 31–36 (2014).

    Article 

    Google Scholar 

  • Solyanikova, I. P. & Golovleva, L. A. Bacterial degradation of chlorophenols: Pathways, biochemica, and genetic aspects. J. Environ. Sci. Health B 39, 333–351 (2004).

    Article 

    Google Scholar 

  • Olaniran, A. O. & Igbinosa, E. O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 83, 1297–1306 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kusmierek, K. The removal of chlorophenols from aqueous solutions using activated carbon adsorption integrated with H2O2 oxidation. Reac. Kinet. Mech. Cat. 119, 19–34 (2016).

    CAS 
    Article 

    Google Scholar 

  • Igbinosa, E., Odjadjare, E., Vicent, N. & Ideemndia, O. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013, 11 (2013).

    Google Scholar 

  • Hossain, G. & McLaughlan, R. Kinetic investigations of oxidation of chlorophenols by permanganate. J. Environ. Chem. Ecotoxicol 5, 81–89 (2013).

    Google Scholar 

  • Ryan, D., Leukes, W. & Burton, S. Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Bioresour. Technol 98, 579–587 (2016).

    Article 

    Google Scholar 

  • Zhao, L., Wu, Q. & Ma, A. Biodegradation of phenolic contaminants: Current status and perspectives. In International Conference on Advanced Environmental Engineering IOP Publishing. Series: Earth and Environmental Science. Vol 111, 012024 (2018).

  • Walter, M., Boul, L., Chong, R. & Ford, C. Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. J. Environ. Qual. 24(36), 1749–1759 (2004).

    Google Scholar 

  • Cameron, M. D., Timofeevski, S. & Aust, S. D. Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl. Microbiol. Biotechnol. 54, 751–758 (2000).

    CAS 
    Article 

    Google Scholar 

  • Tuomela, M., Lyytikainen, M., Oivanena, P. & Hatakka, A. Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol. Biochem. 31, 65–74 (1999).

    CAS 
    Article 

    Google Scholar 

  • Field, J. & Sierra-Alvarez, R. Microbial degradation of chlorinated phenols. Rev. Environ. Sci. Biotechnol 7, 211–241 (2008).

    CAS 
    Article 

    Google Scholar 

  • Bosso, L. & Cristinzio, G. A. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Rev. Environ. Sci. Biotechnol 13, 387–427 (2014).

    CAS 
    Article 

    Google Scholar 

  • Field, J. A. & Sierra-Alvarez, R. Microbial transformation and degradation of polychlorinated biphenyls. Environ. Pollut 155, 1–12 (2008).

    CAS 
    Article 

    Google Scholar 

  • Nikolaivits, E. et al. Degradation mechanism of 2,4-dichlorophenol by fungi isolated from marine invertebrates. Int. J. Mol. Sci 21, 3317. https://doi.org/10.3390/ijms21093317 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Cser-jesi, A. J. & Johnson, E. Methylation of entachlorophenol by Trichoderma virgatum. Can. J. Microbiol. 18, 45–49 (1972).

    CAS 
    Article 

    Google Scholar 

  • van Leeuwen, J., Nicholson, B., Hayes, K. & Mulcahy, D. Degradation of chlorophenolic compounds by Trichoderma harzianum isolated from Lake Bonney, South-Eastern South Australia. Environ Toxicol. Water Qual. 12, 335–342 (1997).

    ADS 
    Article 

    Google Scholar 

  • Carvalho, M. B. et al. Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J. Ind. Microbiol. Biotechnol. 36, 1249–1256 (2009).

    CAS 
    Article 

    Google Scholar 

  • Chakroun, H., Mechichi, T., Martinez, M. J., Dhouib, A. & Sayadi, S. Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: Application on bioremediation of phenolic compounds ‬. Process Biochem. 45, 507–513 (2010).

    CAS 
    Article 

    Google Scholar 

  • Abdel-Fatah, O. M. et al. Physiological studies on carboxymethyl cellulase formation by Aspergillus terreus DSM 826. Braz. J. Microbiol. 43(1), 01–11 (2012).

    CAS 
    Article 

    Google Scholar 

  • Sonika, P. et al. Trichoderma species cellulases produced by solid state fermentation. J. Data Min. Genom. Proteom. 6, 2 (2015).

    Google Scholar 

  • Al-Hawash, B. A. et al. Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field. Iraq. Biotechnol. Rep 17, 104–109. https://doi.org/10.1016/j.btre.2017.12.006 (2018).

    Article 

    Google Scholar 

  • Zafra, G., Absalón, A. E. & Cortes-Espinosa, D. V. Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Braz. J. Microbiol 46, 937–941. https://doi.org/10.1590/S1517-838246320140575 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smit, E., Leeflang, P., Glandorf, B., van Elsas, J. D. & Wernars, K. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 65(6), 2614–2621 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • White, T. J. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal genes. In PCR Protocols: A Guide to Methods and Applications 315–22 (1990).

  • Ryu, W. R. et al. Biodegradation of white rot fungi under ligninolytic and nonligninolytic conditions. Biotechnol Bioproc. E 5, 211–214 (2000).

    CAS 
    Article 

    Google Scholar 

  • Dubois, K., Gilles, J., Hamilton, P., Rebers, A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

    CAS 
    Article 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).

    CAS 
    Article 

    Google Scholar 

  • Statistical Packages for Software Sciences. Version 21.0 Armonk (New York: IBM Corporation, 2013).

  • Lin, S.-H. & Juang, R.-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environ. Manage 90, 1336–1349. https://doi.org/10.1016/j.jenvman.2008.09.003 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kumar, S. N., Subbaiah, V. M., Reddy, S. A. & Krishnaiah, A. Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads. J. Chem. Technol. Biotechnol 84, 972–981. https://doi.org/10.1002/jctb.2120 (2009).

    CAS 
    Article 

    Google Scholar 

  • Wang, C. C., Lee, C. M., Lu, C. J., Chuang, M. S. & Huang, C. Z. Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41, 1873–1879. https://doi.org/10.1016/S00456535(00)00090-4 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kavamura, V. N. & Esposito, E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv 28, 61–69 (2010).

    CAS 
    Article 

    Google Scholar 

  • Mohsenzade, F., Chehregani, A. & Akbari, M. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran J. Environ. Health. Eng 9, 26–34 (2012).

    Article 

    Google Scholar 

  • Nikolaivits, E. et al. Unraveling the detoxification mechanism of 2,4-dichlorophenol by marine-derived mesophotic symbiotic fungi isolated from marine invertebrates. Mar. Drugs. 17, 564. https://doi.org/10.3390/md17100564 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Scientific opinion on risk assessment for a selected group of pesticides from the triazole group to test possible methodologies to assess cumulative effects from exposure through food from these pesticides on human health. EFSA J. 7, 1167. https://www.efsa.europa.eu/en/efsajournal/pub/1167 (2009).

  • Brotman, Y., Kapuganti, J. G. & Viterbo, A. Trichoderma. Curr. Biol. 20, R390–R439 (2010).

    CAS 
    Article 

    Google Scholar 

  • Boroujeni, N. A., Hassanshahian, M., Mohammad, S. & Khoshrou, R. Isolation and characterization of phenol degrading bacteria from Persian Gulf. IJABBR 2, 408–416 (2014).

    CAS 

    Google Scholar 

  • Roostaei, N. & Tezel, F. H. Removal of phenol from aqueous solutions by adsorption. J. Environ. Manage 70, 157–164. https://doi.org/10.1016/j.jenvman.2003.11.004 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Demnerova, K. et al. Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations. Int. Microbiol 8, 205–211 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Reddy, G. V. B. & Gold, M. H. Degradation of pentachlorophenol by Phanerochaete chrysosporium: Intermediates and reactions involved. Microbiology 146, 405–413 (2000).

    CAS 
    Article 

    Google Scholar 

  • Cortés, D. V., Bernal, R. & Tomasini, A. Efecto de las condiciones de cultivo sumergido en la degradación de pentaclorofenol. Información Tecnológica 12, 75–80 (2001).

    Google Scholar 

  • Crawford, R. L., Jung, C. M. & Strap, J. L. The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 18, 525–539 (2007).

    CAS 
    Article 

    Google Scholar 

  • Bergauer, P., Fonteyne, P. A., Nolard, N., Schinner, F. & Margesin, R. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Hemosphere 59, 909–918 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bovio, E. et al. The culturable mycobiota of a Mediterranean marine site after an oil spill: Isolation, identification and potential application in bioremediation. Sci. Total Environ. 576, 310–318 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures

    Microbotanical residues for the study of early hominin tools