Arora, P. K. & Bae, H. Bacterial degradation of chlorophenols and their derivatives. Microb. Cell Fact. 13, 31–36 (2014).
Google Scholar
Solyanikova, I. P. & Golovleva, L. A. Bacterial degradation of chlorophenols: Pathways, biochemica, and genetic aspects. J. Environ. Sci. Health B 39, 333–351 (2004).
Google Scholar
Olaniran, A. O. & Igbinosa, E. O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 83, 1297–1306 (2011).
Google Scholar
Kusmierek, K. The removal of chlorophenols from aqueous solutions using activated carbon adsorption integrated with H2O2 oxidation. Reac. Kinet. Mech. Cat. 119, 19–34 (2016).
Google Scholar
Igbinosa, E., Odjadjare, E., Vicent, N. & Ideemndia, O. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013, 11 (2013).
Hossain, G. & McLaughlan, R. Kinetic investigations of oxidation of chlorophenols by permanganate. J. Environ. Chem. Ecotoxicol 5, 81–89 (2013).
Ryan, D., Leukes, W. & Burton, S. Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Bioresour. Technol 98, 579–587 (2016).
Google Scholar
Zhao, L., Wu, Q. & Ma, A. Biodegradation of phenolic contaminants: Current status and perspectives. In International Conference on Advanced Environmental Engineering IOP Publishing. Series: Earth and Environmental Science. Vol 111, 012024 (2018).
Walter, M., Boul, L., Chong, R. & Ford, C. Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. J. Environ. Qual. 24(36), 1749–1759 (2004).
Cameron, M. D., Timofeevski, S. & Aust, S. D. Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl. Microbiol. Biotechnol. 54, 751–758 (2000).
Google Scholar
Tuomela, M., Lyytikainen, M., Oivanena, P. & Hatakka, A. Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol. Biochem. 31, 65–74 (1999).
Google Scholar
Field, J. & Sierra-Alvarez, R. Microbial degradation of chlorinated phenols. Rev. Environ. Sci. Biotechnol 7, 211–241 (2008).
Google Scholar
Bosso, L. & Cristinzio, G. A. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Rev. Environ. Sci. Biotechnol 13, 387–427 (2014).
Google Scholar
Field, J. A. & Sierra-Alvarez, R. Microbial transformation and degradation of polychlorinated biphenyls. Environ. Pollut 155, 1–12 (2008).
Google Scholar
Nikolaivits, E. et al. Degradation mechanism of 2,4-dichlorophenol by fungi isolated from marine invertebrates. Int. J. Mol. Sci 21, 3317. https://doi.org/10.3390/ijms21093317 (2020).
Google Scholar
Cser-jesi, A. J. & Johnson, E. Methylation of entachlorophenol by Trichoderma virgatum. Can. J. Microbiol. 18, 45–49 (1972).
Google Scholar
van Leeuwen, J., Nicholson, B., Hayes, K. & Mulcahy, D. Degradation of chlorophenolic compounds by Trichoderma harzianum isolated from Lake Bonney, South-Eastern South Australia. Environ Toxicol. Water Qual. 12, 335–342 (1997).
Google Scholar
Carvalho, M. B. et al. Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J. Ind. Microbiol. Biotechnol. 36, 1249–1256 (2009).
Google Scholar
Chakroun, H., Mechichi, T., Martinez, M. J., Dhouib, A. & Sayadi, S. Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: Application on bioremediation of phenolic compounds . Process Biochem. 45, 507–513 (2010).
Google Scholar
Abdel-Fatah, O. M. et al. Physiological studies on carboxymethyl cellulase formation by Aspergillus terreus DSM 826. Braz. J. Microbiol. 43(1), 01–11 (2012).
Google Scholar
Sonika, P. et al. Trichoderma species cellulases produced by solid state fermentation. J. Data Min. Genom. Proteom. 6, 2 (2015).
Al-Hawash, B. A. et al. Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field. Iraq. Biotechnol. Rep 17, 104–109. https://doi.org/10.1016/j.btre.2017.12.006 (2018).
Google Scholar
Zafra, G., Absalón, A. E. & Cortes-Espinosa, D. V. Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Braz. J. Microbiol 46, 937–941. https://doi.org/10.1590/S1517-838246320140575 (2015).
Google Scholar
Smit, E., Leeflang, P., Glandorf, B., van Elsas, J. D. & Wernars, K. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 65(6), 2614–2621 (1999).
Google Scholar
White, T. J. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal genes. In PCR Protocols: A Guide to Methods and Applications 315–22 (1990).
Ryu, W. R. et al. Biodegradation of white rot fungi under ligninolytic and nonligninolytic conditions. Biotechnol Bioproc. E 5, 211–214 (2000).
Google Scholar
Dubois, K., Gilles, J., Hamilton, P., Rebers, A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).
Google Scholar
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301 (2021).
Google Scholar
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).
Google Scholar
Statistical Packages for Software Sciences. Version 21.0 Armonk (New York: IBM Corporation, 2013).
Lin, S.-H. & Juang, R.-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environ. Manage 90, 1336–1349. https://doi.org/10.1016/j.jenvman.2008.09.003 (2009).
Google Scholar
Kumar, S. N., Subbaiah, V. M., Reddy, S. A. & Krishnaiah, A. Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads. J. Chem. Technol. Biotechnol 84, 972–981. https://doi.org/10.1002/jctb.2120 (2009).
Google Scholar
Wang, C. C., Lee, C. M., Lu, C. J., Chuang, M. S. & Huang, C. Z. Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41, 1873–1879. https://doi.org/10.1016/S00456535(00)00090-4 (2000).
Google Scholar
Kavamura, V. N. & Esposito, E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv 28, 61–69 (2010).
Google Scholar
Mohsenzade, F., Chehregani, A. & Akbari, M. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran J. Environ. Health. Eng 9, 26–34 (2012).
Google Scholar
Nikolaivits, E. et al. Unraveling the detoxification mechanism of 2,4-dichlorophenol by marine-derived mesophotic symbiotic fungi isolated from marine invertebrates. Mar. Drugs. 17, 564. https://doi.org/10.3390/md17100564 (2019).
Google Scholar
Scientific opinion on risk assessment for a selected group of pesticides from the triazole group to test possible methodologies to assess cumulative effects from exposure through food from these pesticides on human health. EFSA J. 7, 1167. https://www.efsa.europa.eu/en/efsajournal/pub/1167 (2009).
Brotman, Y., Kapuganti, J. G. & Viterbo, A. Trichoderma. Curr. Biol. 20, R390–R439 (2010).
Google Scholar
Boroujeni, N. A., Hassanshahian, M., Mohammad, S. & Khoshrou, R. Isolation and characterization of phenol degrading bacteria from Persian Gulf. IJABBR 2, 408–416 (2014).
Google Scholar
Roostaei, N. & Tezel, F. H. Removal of phenol from aqueous solutions by adsorption. J. Environ. Manage 70, 157–164. https://doi.org/10.1016/j.jenvman.2003.11.004 (2004).
Google Scholar
Demnerova, K. et al. Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations. Int. Microbiol 8, 205–211 (2005).
Google Scholar
Reddy, G. V. B. & Gold, M. H. Degradation of pentachlorophenol by Phanerochaete chrysosporium: Intermediates and reactions involved. Microbiology 146, 405–413 (2000).
Google Scholar
Cortés, D. V., Bernal, R. & Tomasini, A. Efecto de las condiciones de cultivo sumergido en la degradación de pentaclorofenol. Información Tecnológica 12, 75–80 (2001).
Crawford, R. L., Jung, C. M. & Strap, J. L. The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 18, 525–539 (2007).
Google Scholar
Bergauer, P., Fonteyne, P. A., Nolard, N., Schinner, F. & Margesin, R. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Hemosphere 59, 909–918 (2005).
Google Scholar
Bovio, E. et al. The culturable mycobiota of a Mediterranean marine site after an oil spill: Isolation, identification and potential application in bioremediation. Sci. Total Environ. 576, 310–318 (2017).
Google Scholar
Source: Ecology - nature.com