Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).
Google Scholar
Murphy, R. R., Kemp, W. M. & Ball, W. P. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuar. Coast. 34, 1293–1309 (2011).
Google Scholar
Nixon, S. W. et al. The impact of changing climate on phenology, productivity, and benthic–pelagic coupling in Narragansett Bay. Estuar. Coast. Shelf S. 82, 1–18 (2009).
Google Scholar
Testa, J. M., Murphy, R. R., Brady, D. C. & Kemp, W. M. Nutrient-and climate-induced shifts in the phenology of linked biogeochemical cycles in a temperate estuary. Front. Mar. Sci. 5, 114 (2018).
Scanes, E., Scanes, P. R. & Ross, P. M. Climate change rapidly warms and acidifies Australian estuaries. Nat. Commun. 11, 1–11 (2020).
Statham, P. J. Nutrients in estuaries—An overview and the potential impacts of climate change. Sci. Total Environ. 434, 213–227 (2012).
Google Scholar
Kolber, Z. S. et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292, 2492–2495 (2001).
Google Scholar
Giovannoni, S. J. & Vergin, K. L. Seasonality in ocean microbial communities. Science 335, 671–676 (2012).
Google Scholar
Sul, W. J., Oliver, T. A., Ducklow, H. W., Amaral-Zettler, L. A. & Sogin, M. L. Marine bacteria exhibit a bipolar distribution. Proc. Natl. Acad. Sci. 110, 2342–2347 (2013).
Google Scholar
Agogué, H., Lamy, D., Neal, P. R., Sogin, M. L. & Herndl, G. J. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol. Ecol. 20, 258–274 (2011).
Google Scholar
Ghiglione, J.-F. et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc. Natl. Acad. Sci. 109, 17633–17638 (2012).
Google Scholar
Techtmann, S. M. et al. The unique chemistry of eastern Mediterranean water masses selects for distinct microbial communities by depth. PLoS ONE 10, e0120605 (2015).
Google Scholar
Han, D. et al. Bacterial communities along stratified water columns at the Chukchi Borderland in the western Arctic Ocean. Deep-Sea Res. Pt. II 120, 52–60 (2015).
Han, D. et al. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic ocean during sea-ice melting. PLoS ONE 9, e86887 (2014).
Google Scholar
Hernando-Morales, V., Ameneiro, J. & Teira, E. Water mass mixing shapes bacterial biogeography in a highly hydrodynamic region of the Southern Ocean. Environ. Microbiol. 19, 1017–1029 (2017).
Google Scholar
Han, D., Kang, H. Y., Kang, C.-K., Unno, T. & Hur, H.-G. Seasonal mixing-driven system in Estuarine-Coastal Zone triggers an ecological shift in bacterial assemblages involved in phytoplankton-derived DMSP degradation. Microb. Ecol. 79, 12–20 (2020).
Google Scholar
Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).
Google Scholar
Higashi, K., Suzuki, S., Kurosawa, S., Mori, H. & Kurokawa, K. Latent environment allocation of microbial community data. PLoS Comput. Biol. 14, e1006143 (2018).
Google Scholar
Kim, D. et al. Water quality assessment at Jinhae Bay and Gwangyang Bay, South Korea. Ocean Sci. J. 49, 251–264 (2014).
Google Scholar
Chen, M., Kim, D., Liu, H. & Kang, C.-K. Variability in copepod trophic levels and feeding selectivity based on stable isotope analysis in Gwangyang Bay of the southern coast of the Korean Peninsula. Biogeosciences 15, 2055–2073 (2018).
Google Scholar
Lee, J. H. et al. The effects of different environmental factors on the biochemical composition of particulate organic matter in Gwangyang Bay, South Korea. Biogeosciences 14, 1903–1917 (2017).
Google Scholar
Fine, P. V. & Kembel, S. W. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34, 552–565 (2011).
Stegen, J. C., Lin, X., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664 (2012).
Google Scholar
Tripathi, B. M. et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 12, 1072–1083 (2018).
Google Scholar
Feng, Y. et al. Two key features influencing community assembly processes at regional scale: Initial state and degree of change in environmental conditions. Mol. Ecol. 27, 5238–5251 (2018).
Google Scholar
Stegen, J. C., Lin, X., Fredrickson, J. K. & Konopka, A. E. Estimating and mapping ecological processes influencing microbial community assembly. Front. Micorbiol. 6, 370 (2015).
Dini-Andreote, F., Stegen, J. C., van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl. Acad. Sci. 112, E1326–E1332 (2015).
Google Scholar
Wang, J. et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: Deterministic versus stochastic processes. ISME J. 7, 1310–1321 (2013).
Google Scholar
Lindemann, S. R. et al. The epsomitic phototrophic microbial mat of Hot Lake, Washington: Community structural responses to seasonal cycling. Front. Micorbiol. 4, 323 (2013).
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
Amaral-Zettler, L. A. et al. Microbial community structure across the tree of life in the extreme Rio Tinto. ISME J. 5, 42–50 (2011).
Google Scholar
Han, D. et al. Survey of bacterial phylogenetic diversity during the glacier melting season in an Arctic Fjord. Microb. Ecol. 81, 579–591 (2021).
Google Scholar
Brand, L. E., Campbell, L. & Bresnan, E. Karenia: The biology and ecology of a toxic genus. Harmful Algae 14, 156–178 (2012).
Escalera, L., Pazos, Y., Moroño, Á. & Reguera, B. Noctiluca scintillans may act as a vector of toxigenic microalgae. Harmful Algae 6, 317–320 (2007).
Tada, K., Pithakpol, S., Yano, R. & Montani, S. Carbon and nitrogen content of Noctiluca scintillans in the Seto Inland Sea, Japan. J. Plankton. Res. 22, 1203–1211 (2000).
Hyun, B. et al. Effects of increased CO2 and temperature on the growth of four diatom species (Chaetoceros debilis, Chaetoceros didymus, Skeletonema costatum and Thalassiosira nordenskioeldii) in laboratory experiments. J. Environ. Sci. Int. 23, 1003–1012 (2014).
Park, J. S., Lee, S. D. & Lee, J. H. Taxonomic study on the euryhaline Cyclotella (Bacillariophyta) species in Korea. J. Ecol. Environ. 36, 407–409 (2013).
Yun, S. M. & Lee, J. H. Morphology and distribution of some marine diatoms, Family Rhizosoleniaceae, in Korean coastal waters: A genus Rhizosolenia. Algae 25, 173–182 (2010).
Park, J. S., Jung, S. W., Lee, S. D., Yun, S. M. & Lee, J. H. Species diversity of the genus Thalassiosira (Thalassiosirales, Bacillariophyta) in South Korea and its biogeographical distribution in the world. Phycologia 55, 403–423 (2016).
Dupont, C. L. et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 6, 1186–1199 (2012).
Google Scholar
Landa, M. et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 13, 2536–2550 (2019).
Google Scholar
Müller, A. L. et al. Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment. Environ. Microbiol. 20, 2927–2940 (2018).
Google Scholar
Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).
Google Scholar
Giovannoni, S. J. SAR11 bacteria: The most abundant plankton in the oceans. Annu. Rev. Mar. Sci. 9, 231–255 (2017).
Google Scholar
Mühlenbruch, M., Grossart, H. P., Eigemann, F. & Voss, M. Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ. Microbiol. 20, 2671–2685 (2018).
Google Scholar
Stock, W. et al. Host specificity in diatom–bacteria interactions alleviates antagonistic effects. FEMS Microbiol. Ecol. 95, 171 (2019).
Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).
Google Scholar
Illumina. 16S Metagenomic sequencing library preparation. Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System (2013).
Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
Google Scholar
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).
Google Scholar
Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).
Google Scholar
R Core Team. The R Stats Package (R Core Team, 2002).
Oksanen, J. & Blanchet, F. G. Package ‘vegan’ (2017).
Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. 1 (2017).
Roberts, D. W. & Roberts, M. D. W. Package ‘labdsv’. (2016).
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
Google Scholar
Gustavsen, J. A., Pai, S., Isserlin, R., Demchak, B. & Pico, A. R. RCy3: Network biology using cytoscape from within R. F1000Research 8, 1774 (2019).
Google Scholar
Kahle, D., Wickham, H. & Kahle, M. D. Package ‘ggmap’ (2019).
Source: Ecology - nature.com