in

Influences of summer warming and nutrient availability on Salix glauca L. growth in Greenland along an ice to sea gradient

  • Meredith, M. et al. Polar regions. IPCC Intergov. Panel Clim. Chang. Geneva, Switz. 3, 203–320 (2019).

  • Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R. & Liu, P. Less than 2 °C warming by 2100 unlikely. Nat. Clim. Chang. 7, 637–641 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Chang. Biol. 20, 3256–3269 (2014).

    PubMed 
    ADS 

    Google Scholar 

  • Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Myers-Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2018).

    Google Scholar 

  • Martin, A. C., Jeffers, E. S., Petrokofsky, G., Myers-Smith, I. & Macias-Fauria, M. Shrub growth and expansion in the Arctic tundra: An assessment of controlling factors using an evidence-based approach. Environ. Res. Lett. 12, (2017).

  • Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 5, 887–891 (2015).

    ADS 

    Google Scholar 

  • Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 10, 106–117 (2020).

    ADS 

    Google Scholar 

  • Epstein, H. E., Myers-Smith, I. & Walker, D. A. Recent dynamics of arctic and sub-arctic vegetation. Environ. Res. Lett. 8, 015040 (2013).

    ADS 

    Google Scholar 

  • Ackerman, D., Griffin, D., Hobbie, S. E. & Finlay, J. C. Arctic shrub growth trajectories differ across soil moisture levels. Glob. Chang. Biol. 23, 4294–4302 (2017).

    PubMed 

    Google Scholar 

  • Carrer, M., Pellizzari, E., Prendin, A. L., Pividori, M. & Brunetti, M. Winter precipitation – not summer temperature – is still the main driver for Alpine shrub growth. Sci. Total Environ. 682, 171–179 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Xu, Y., Ramanathan, V. & Washington, W. M. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols. Atmos. Chem. Phys. 16, 1303–1315 (2016).

    CAS 
    ADS 

    Google Scholar 

  • Francon, L. et al. Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better? Ecol. Indic. 115, (2020).

  • López-Blanco, E. et al. Exchange of CO2 in Arctic tundra: impacts of meteorological variations and biological disturbance. Biogeosciences 14, 4467–4483 (2017).

    ADS 

    Google Scholar 

  • Lund, M. et al. Larval outbreaks in West Greenland: Instant and subsequent effects on tundra ecosystem productivity and CO2 exchange. Ambio 46, 26–38 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prendin, A. L. et al. Immediate and carry-over effects of insect outbreaks on vegetation growth in West Greenland assessed from cells to satellite. J. Biogeogr. 47, 87–100 (2020).

    Google Scholar 

  • Hobbie, S. E., Nadelhoffer, K. J. & Högberg, P. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242, 163–170 (2002).

    CAS 

    Google Scholar 

  • Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Primary and secondary stem growth in arctic shrubs: Implications for community response to environmental change. J. Ecol. 90, 251–267 (2002).

    Google Scholar 

  • Sullivan, P. F., Ellison, S. B. Z., McNown, R. W., Brownlee, A. H. & Sveinbjörnsson, B. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska. Ecology 96, 716–727 (2015).

    PubMed 

    Google Scholar 

  • Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Shaver, G. R. & Chapin, F. S. Long-term responses to factorial, NPK fertilizer treatment by Alaskan wet and moist tundra sedge species. Ecography (Cop.) 18, 259–275 (1995).

    Google Scholar 

  • Choudhary, S., Blaud, A., Osborn, A. M., Press, M. C. & Phoenix, G. K. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events. Sci. Total Environ. 554–555, 303–310 (2016).

    PubMed 
    ADS 

    Google Scholar 

  • Bergström, A. K. & Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Chang. Biol. 12, 635–643 (2006).

    ADS 

    Google Scholar 

  • Wild, B. et al. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils. Sci. Rep. 6, 25607 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Pedersen, E. P., Elberling, B. & Michelsen, A. Foraging deeply: Depth-specific plant nitrogen uptake in response to climate-induced N-release and permafrost thaw in the High Arctic. Glob. Chang. Biol. 26, 6523–6536 (2020).

    PubMed 
    ADS 

    Google Scholar 

  • Mack, M. C., Schuur, E. A. G. & Bret-harte, M. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. 431, 658–661 (2004).

    Google Scholar 

  • Zamin, T. J. & Grogan, P. Birch shrub growth in the low Arctic: the relative importance of experimental warming, enhanced nutrient availability, snow depth and caribou exclusion. Environ. Res. Lett. 7, 034027 (2012).

    ADS 

    Google Scholar 

  • DeMarco, J., MacK, M. C., Bret-Harte, M. S., Burton, M. & Shaver, G. R. Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra. Ecosphere 5, 1–22 (2014).

    Google Scholar 

  • Zamin, T. J., Bret-Harte, M. S. & Grogan, P. Evergreen shrubs dominate responses to experimental summer warming and fertilization in Canadian mesic low arctic tundra. J. Ecol. 102, 749–766 (2014).

    Google Scholar 

  • Fenger-Nielsen, R. et al. Footprints from the past: The influence of past human activities on vegetation and soil across five archaeological sites in Greenland. Sci. Total Environ. 654, 895–905 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Forbes, B. C., Ebersole, J. J. & Strandberg, B. Anthropogenic disturbance and patch dynamics in Circumpolar Arctic ecosystems. Conserv. Biol. 15, 954–969 (2001).

    Google Scholar 

  • Andersen, E. A. S. et al. Nitrogen isotopes reveal high N retention in plants and soil of old Norse and Inuit deposits along a wet-dry arctic fjord transect in Greenland. Plant Soil 455, 241–255 (2020).

    CAS 

    Google Scholar 

  • Normand, S. et al. Legacies of historical human activities in Arctic woody plant dynamics. Annu. Rev. Environ. Resour. 42, 541–567 (2017).

    Google Scholar 

  • Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).

    Google Scholar 

  • Cappelen, J., Vinther, B. M., Kern-Hansen, C., Laursen, E. V. & Jørgensen, P. V. Greenland-DMI Historical Climate Data Collection 1784–2020 (Danish Meteorological Institute, 2021).

    Google Scholar 

  • Hollesen, J. et al. Predicting the loss of organic archaeological deposits at a regional scale in Greenland. Sci. Rep. 9, 9097 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Fenger-Nielsen, R. et al. Arctic archaeological sites threatened by climate change: A regional multi-threat assessment of sites in south-west Greenland. Archaeometry 62, 1280–1297 (2020).

    CAS 

    Google Scholar 

  • Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015–1033 (2017).

    ADS 

    Google Scholar 

  • Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 1–12 (2020).

    ADS 

    Google Scholar 

  • Assmann, J. J. et al. Local snow melt and temperature—but not regional sea ice—explain variation in spring phenology in coastal Arctic tundra. Glob. Chang. Biol. 25, 2258–2274 (2019).

    PubMed 
    ADS 

    Google Scholar 

  • Bhatt, U. S. et al. Climate drivers of Arctic tundra variability and change using an indicators framework. Environ. Res. Lett. 16, (2021).

  • Hollesen, J., Matthiesen, H. & Elberling, B. The impact of Climate Change on an archaeological site in the Arctic. Archaeometry 59, 1175–1189 (2017).

    CAS 

    Google Scholar 

  • Tolvanen, A. & Henry, G. H. R. Responses of carbon and nitrogen concentrations in high arctic plants to experimental warming. Can. J. Bot. 79, 711–718 (2001).

    CAS 

    Google Scholar 

  • Oppen, J. et al. Annual air temperature variability and biotic interactions explain tundra shrub species abundance. J. Veg. Sci. 32, (2021).

  • Hobbie, S. E. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66, 503–522 (1996).

    Google Scholar 

  • Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R. & Laundre, J. A. Effects of temperature and substrate quality on element mineralization in six Arctic soils. Ecology 72, 242–253 (1991).

    Google Scholar 

  • Arens, S. J. T., Sullivan, P. F. & Welker, J. M. Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high Arctic ecosystem. J. Geophys. Res. Biogeosciences 113, 1–10 (2008).

    Google Scholar 

  • Baddeley, J. A., Woodin, S. J. & Alexander, I. J. Effects of increased nitrogen and phosphorus availability on the photosynthesis and nutrient relations of three Arctic dwarf shrubs from Svalbard. Funct. Ecol. 8, 676 (1994).

    Google Scholar 

  • Anadon-Rosell, A. et al. Xylem anatomical and growth responses of the dwarf shrub Vaccinium myrtillus to experimental CO2 enrichment and soil warming at treeline. Sci. Total Environ. 642, 1172–1183 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Dawes, M. A. et al. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation. Glob. Chang. Biol. 21, 2005–2021 (2015).

    PubMed 
    ADS 

    Google Scholar 

  • Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. 103, 1342–1346 (2006).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Matthiesen, H., Fenger-Nielsen, R. F., Harmsen, H., Madsen, C. K. & Hollesen, J. The impact of vegetation on archaeological sites in the low arctic in light of climate change. Arctic 73, 141–152 (2020).

    Google Scholar 

  • Dahl, M. B. et al. Warming, shading and a moth outbreak reduce tundra carbon sink strength dramatically by changing plant cover and soil microbial activity. Sci. Rep. 7, 1–13 (2017).

    CAS 

    Google Scholar 

  • Westergaard-Nielsen, A., Karami, M., Hansen, B. U., Westermann, S. & Elberling, B. Contrasting temperature trends across the ice-free part of Greenland. Sci. Rep. 8, 1586 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Schweingruber, F. H., Börner, A. & Schulze, E.-D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees. (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-20435-7

  • Pellizzari, E., Camarero, J. J., Gazol, A., Sangüesa-Barreda, G. & Carrer, M. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. Glob. Chang. Biol. 22, 2125–2137 (2016).

    PubMed 
    ADS 

    Google Scholar 

  • Myers-Smith, I. H. et al. Methods for measuring arctic and alpine shrub growth: A review. Earth-Science Rev. 140, 1–13 (2015).

    ADS 

    Google Scholar 

  • Stokes, M. A. & Smiley, T. L. Introduction to Tree-Ring Dating. (University of Chicago Press, 1968).

  • Cook, E. R., Briffa, K., Shiyatov, S. & Mazepa, V. Methods of Dendrochronology: Applications in the Environmental Sciences. (Kluwer Academic Publisher, 1990).

  • Gärtner, H. & Schweingruber, F. H. Microscopic preparation techniques for plant stem analysis. Kessel 95, 132–150 (2013).

    Google Scholar 

  • von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K. & Carrer, M. Quantitative wood anatomy—practical guidelines. Front. Plant Sci. 7, 781 (2016).

    Google Scholar 

  • Holmes, R. L. Computer-assisted quality control in tree- ring dating and measurement. Tree-ring Bulletin 43, 69–78 (1983).

    Google Scholar 

  • Belokopytova, L. V, Babushkina, E. A., Zhirnova, D. F., Panyushkina, I. P. & Vaganov, E. A. Pine and larch tracheids capture seasonal variations of climatic signal at moisture-limited sites. Trees 33, 227–242 (2019).

  • Büntgen, U. et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 103, 489–501 (2015).

    Google Scholar 

  • Fritts., H. C. Dendrochronology and Dendroclimatology. in Tree Rings and Climate 1–54 (1976). https://doi.org/10.1016/B978-0-12-268450-0.50006-9

  • Briffa, K. & Jones, P. Basic chronology statistics and assessment. in Methods of Dendrochronology: Applications in the Environmental Sciences 137–152 (Kluwer Academic Publishers, 1990).

  • Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer New York, 2009). https://doi.org/10.1007/978-0-387-87458-6

  • Gazol, A. & Camarero, J. J. Mediterranean dwarf shrubs and coexisting trees present different radial-growth synchronies and responses to climate. Plant Ecol. 213, 1687–1698 (2012).

    Google Scholar 

  • Crawley, M. J. Mixed-Effects Models. in R Book Second edition 681–714 (2007).

  • Zar, J. H. Biostatistical analysis Fifth edition. USA Prentice Hall 4165 41594165, (1999).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, arXiv:1406.5823 (2015).

  • Pinheiro, J. C. & Bates, D. M. Linear Mixed-Effects Models: Basic Concepts and Examples. in Mixed-Effects Models in S and S-PLUS 3–56 (Springer-Verlag, 2000). https://doi.org/10.1007/0-387-22747-4_1

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, (2017).

  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.


  • Source: Ecology - nature.com

    New power sources

    Functionally distinct T-helper cell phenotypes predict resistance to different types of parasites in a wild mammal