in

Alternative stable states of the forest mycobiome are maintained through positive feedbacks

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    Article 

    Google Scholar 

  • McGuire, K. L. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88, 567–574 (2007).

    Article 

    Google Scholar 

  • Selosse, M.-A., Richard, F., He, X. & Simard, S. W. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21, 621–628 (2006).

    Article 

    Google Scholar 

  • Simard, S. W. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).

    CAS 
    Article 

    Google Scholar 

  • Klein, T., Siegwolf, R. T. W. & Korner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).

    CAS 
    Article 

    Google Scholar 

  • Franklin, O., Näsholm, T., Högberg, P. & Högberg, M. N. Forests trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbiosis. New Phytol. 203, 657–666 (2014).

    CAS 
    Article 

    Google Scholar 

  • Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).

    CAS 
    Article 

    Google Scholar 

  • Cheng, L. et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337, 1084–1087 (2012).

    CAS 
    Article 

    Google Scholar 

  • Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).

    Article 

    Google Scholar 

  • Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Article 

    Google Scholar 

  • Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    CAS 
    Article 

    Google Scholar 

  • Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

    CAS 
    Article 

    Google Scholar 

  • Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

    CAS 
    Article 

    Google Scholar 

  • Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).

    Article 

    Google Scholar 

  • Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).

  • Blanchet, F. G., Cazelles, K. & Gravel, D. Co‐occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).

    Article 

    Google Scholar 

  • Connor, E. F. & Simberloff, D. The assembly of species communities: chance or competition? Ecology 60, 1132 (1979).

    Article 

    Google Scholar 

  • Molofsky, J. & Bever, J. D. A novel theory to explain species diversity in landscapes: positive frequency dependence and habitat suitability. Proc. R. Soc. Lond. B 269, 2389–2393 (2002).

    Article 

    Google Scholar 

  • Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities: phylogeny and coexistence. Ecol. Lett. 13, 1085–1093 (2010).

    Article 

    Google Scholar 

  • Beisner, B., Haydon, D. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).

    Article 

    Google Scholar 

  • Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Change Biol. 24, 4544–4553 (2018).

    Article 

    Google Scholar 

  • Frelich, L. E., Calcote, R. R., Davis, M. B. & Pastor, J. Patch formation and maintenance in an old-growth hemlock-hardwood forest. Ecology 74, 513–527 (1993).

    Article 

    Google Scholar 

  • Davis, M. B., Calcote, R. R., Sugita, S. & Takahara, H. Patchy invasion and the origin of a hemlock-hardwood forest mosaic. Ecology 79, 2641–2659 (1998).

    Google Scholar 

  • Jo, I., Fei, S., Oswalt, C. M., Domke, G. M. & Phillips, R. P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358 (2019).

    CAS 
    Article 

    Google Scholar 

  • Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    CAS 
    Article 

    Google Scholar 

  • Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128 (2019).

    CAS 
    Article 

    Google Scholar 

  • Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 16, 23163–23168 (2019). https://doi.org/10.1073/pnas.1906655116

  • Hodge, A. & Fitter, A. H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl Acad. Sci. USA 107, 13754–13759 (2010).

    CAS 
    Article 

    Google Scholar 

  • Fernandez, C. W. & Kennedy, P. G. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol. 209, 1382–1394 (2016).

    CAS 
    Article 

    Google Scholar 

  • The Forest Inventory and Analysis Database: Database Description and User Guide Version 7.0 for Phase 2 (USDA Forest Service, 2018).

  • Johnson, D. J., Beaulieu, W. T., Bever, J. D. & Clay, K. Conspecific negative density dependence and forest diversity. Science 336, 904–907 (2012).

    CAS 
    Article 

    Google Scholar 

  • van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    Article 

    Google Scholar 

  • NRSP-3 (National Atmospheric Deposition Program, 2015).

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models: estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • Hartigan, J. & Hartigan, P. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).

    Article 

    Google Scholar 

  • Dickie, I. A., Hurst, J. M. & Bellingham, P. J. Comment on ‘conspecific negative density dependence and forest diversity’. Science 338, 469–469 (2012).

    CAS 
    Article 

    Google Scholar 

  • Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems: data exploration. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).

    Article 

    Google Scholar 

  • Masek, J. G. et al. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 112, 2914–2926 (2008).

    Article 

    Google Scholar 

  • Averill, C. colinaverill/altSS_forest_mycorrhizas: First release to establish Zenodo DOI for Nature Ecology & Evolution. Zenodo https://zenodo.org/record/5744063 (2021).


  • Source: Ecology - nature.com

    Non-target impacts of fungicide disturbance on phyllosphere yeasts in conventional and no-till management

    More sensitive X-ray imaging