in

Aquatic macroinvertebrate assemblages in rivers influenced by mining activities

  • Marqués, M. J., Martínez-Conde, E., Rovira, J. V. & Ordóñez, S. Heavy metals pollution of aquatic ecosystems in the vicinity of a recently closed underground lead-zinc mine (Basque Country, Spain). Environ. Geol. 40, 1125–1137 (2001).

    Google Scholar 

  • Bud, I., Duma, S., Denuţ, I. & Taşcu, I. Water pollution due to mining activity. Causes and consequences Wasserverunreinigung aufgrund von Bergbauaktivitäten. Ursachen und Konsequenzen. BHM Berg- Hüttenmännische Monatsh. 152, 326–328 (2007).

    CAS 

    Google Scholar 

  • Ugya, Y. Assessment of ambient air quality resulting from anthropogenic emissions. Am. J. Prev. Med. Public Health https://doi.org/10.5455/ajpmph.20171030080402 (2017).

    Article 

    Google Scholar 

  • Dore, E. Environment and society: Long-term trends in Latin American mining. Environ. Hist. Camb. 6, 1–29 (2000).

    Google Scholar 

  • Zhou, Q. et al. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 22, 925 (2020).

    Google Scholar 

  • Graesser, J., Aide, T. M., Grau, H. R. & Ramankutty, N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ. Res. Lett. 10, 034017 (2015).

    ADS 

    Google Scholar 

  • Ramírez, A., Pringle, C. M. & Wantzen, K. M. Tropical stream conservation. Trop. Stream Ecol. https://doi.org/10.1016/B978-012088449-0.50012-1 (2008).

    Article 

    Google Scholar 

  • Uriarte, M., Yackulic, C. B., Lim, Y. & Arce-Nazario, J. A. Influence of land use on water quality in a tropical landscape: A multi-scale analysis. Landsc. Ecol. 26, 1151–1164 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • White, M. & Barquera, S. Mexico adopts food warning labels, why now?. Health Syst. Reform 6, e1752063 (2020).

    PubMed 

    Google Scholar 

  • Koleff, P. et al. Biodiversity in Mexico: State of knowledge. in Global Biodiversity. 285–337. https://doi.org/10.1201/9780429433634-8. (Apple Academic Press, 2018).

  • Armendáriz-Villegas, E. J. et al. Metal mining and natural protected areas in Mexico: Geographic overlaps and environmental implications. Environ. Sci. Policy 48, 9–19 (2015).

    Google Scholar 

  • Montoya-Lopera, P. et al. New geological, geochronological and geochemical characterization of the San Dimas mineral system: Evidence for a telescoped Eocene-Oligocene Ag/Au deposit in the Sierra Madre Occidental, Mexico. Ore Geol. Rev. 118, 103195 (2020).

    Google Scholar 

  • LeuraVicencio, A. K., CarrizalesYañez, L. & RazoSoto, I. Mercury pollution assessment of mining wastes and soils from former silver amalgamation area in North-Central Mexico. Rev. Int. Contam. Ambient. 33, 655–669 (2017).

    Google Scholar 

  • Veiga, M. M. Introducing New Technologies for Abatement of Global Mercury Pollution in Latin America. United Nations Industrial Development Organization (UNIDO), University of British Columbia (UBC), Center of Mineral Technology (CETEM) (UNIDO, UBC, CETEM, 1997).

  • Camacho, A. et al. Mercury mining in Mexico: I. Community engagement to improve health outcomes from artisanal mining. Ann. Glob. Health 82, 149 (2016).

    PubMed 

    Google Scholar 

  • IUCN. Benefits Beyond Boundaries: Proceedings of the Vth IUCN World Parks Congress : Durban, South Africa. 8–17 September 2003. (Iucn, 2005).

  • González, S. O., Almeida, C. A., Calderón, M., Mallea, M. A. & González, P. Assessment of the water self-purification capacity on a river affected by organic pollution: Application of chemometrics in spatial and temporal variations. Environ. Sci. Pollut. Res. 21, 10583–10593 (2014).

    Google Scholar 

  • Rico-Sánchez, A. E. et al. Biological diversity in protected areas: Not yet known but already threatened. Glob. Ecol. Conserv. 22, e01006 (2020).

    Google Scholar 

  • Harvey, C. A. et al. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv. Biol. 22, 8–15 (2008).

    PubMed 

    Google Scholar 

  • Messerli, B., Grosjean, M. & Vuille, M. Water availability, protected areas, and natural resources in the Andean desert altiplano. Mt. Res. Dev. 17, 229–238 (1997).

    Google Scholar 

  • Servicio Geológico Mexicano. Conoce GeoInfoMex en 3D. https://www.gob.mx/sgm/articulos/conoce-el-sistema-de-consulta-de-informacion-geocientifica-geoinfomex?idiom=es. Accessed 18 Feb 2021. (2019).

  • Resh, V. H. Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ. Monit. Assess. 138, 131–138 (2008).

    PubMed 

    Google Scholar 

  • Ruiz-Picos, R. A., Sedeño-Díaz, J. E. & López-López, E. Calibrating and validating the biomonitoring working party (BMWP) index for the bioassessment of water quality in neotropical streams. in Water Quality (InTech, 2017).

  • Oertel, N. & Salánki, J. Biomonitoring and bioindicators in aquatic ecosystems. in Modern Trends in Applied Aquatic Ecology. 219–246. https://doi.org/10.1007/978-1-4615-0221-0_10. (Springer, 2011).

  • Goodyear, K. L. & McNeill, S. Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: A review. Sci. Total Environ. 229, 1–19 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Clements, W. H. Small-scale experiments support causal relationships between metal contamination and macroinvertebrate community responses. Ecol. Appl. 14, 954–967 (2004).

    Google Scholar 

  • Michailova, P., Warchałowska-Śliwa, E., Szarek-Gwiazda, E. & Kownacki, A. Does biodiversity of macroinvertebrates and genome response of Chironomidae larvae (Diptera) reflect heavy metal pollution in a small pond?. Environ. Monit. Assess. 184, 1–14 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Wright, I. A. & Ryan, M. M. Impact of mining and industrial pollution on stream macroinvertebrates: Importance of taxonomic resolution, water geochemistry and EPT indices for impact detection. Hydrobiologia 772, 103–115 (2016).

    CAS 

    Google Scholar 

  • Wright, I. A. & Burgin, S. Comparison of sewage and coal-mine wastes on stream macroinvertebrates within an otherwise clean upland catchment, Southeastern Australia. Water Air Soil Pollut. 204, 227–241 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Batty, L. C. The potential importance of mine sites for biodiversity. Mine Water Environ. 24, 101–103 (2005).

    Google Scholar 

  • Dolédec, S. & Chessel, D. Co-inertia analysis: An alternative method for studying species–environment relationships. Freshw. Biol. 31, 277–294 (1994).

    Google Scholar 

  • Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4. Multivariate Analysis of Ecological Data with ade4. https://doi.org/10.1007/978-1-4939-8850-1. (Springer, 2018).

  • Dodds, W. K., Clements, W. H., Gido, K., Hilderbrand, R. H. & King, R. S. Thresholds, breakpoints, and nonlinearity in freshwaters as related to management. J. N. Am. Benthol. Soc. 29, 988–997 (2010).

    Google Scholar 

  • Sundermann, A., Gerhardt, M., Kappes, H. & Haase, P. Stressor prioritisation in riverine ecosystems: Which environmental factors shape benthic invertebrate assemblage metrics?. Ecol. Indic. 27, 83–96 (2013).

    Google Scholar 

  • Gutiérrez-Yurrita, P. J., García-Serrano, L. A. & Plata, M. R. Is ecotourism a viable option to generate wealth in brittle environments? A reflection on the case of the Sierra Gorda Biosphere Reserve, México. WIT Trans. Ecol. Environ. 161, 141–151 (2012).

    Google Scholar 

  • Vinson, M. R. Long-term dynamics of an invertebrate assemblage downstream from a large dam. Ecol. Appl. 11, 711–730 (2001).

    Google Scholar 

  • Torres-Olvera, M. J., Durán-Rodríguez, O. Y., Torres-García, U., Pineda-López, R. & Ramírez-Herrejón, J. P. Validation of an index of biological integrity based on aquatic macroinvertebrates assemblages in two subtropical basins of central Mexico. Lat. Am. J. Aquat. Res. 46, 945–960 (2018).

    Google Scholar 

  • Carabias Lillo, J., Provencio, E., de la Maza Elvira, J. & Ruiz Corzo, M. Programa de Manejo Reserva de la Biosfera Sierra Gorda. (México, Instituto Nacional de Ecologıa, SEMARNAT, 1999).

  • Macedo, D. R. et al. The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landsc. Ecol. 29, 1001–1016 (2014).

    Google Scholar 

  • Dutra, S. L. & Callisto, M. Macroinvertebrates as tadpole food: Importance and body size relationships. Rev. Bras. Zool. 22, 923–927 (2005).

    Google Scholar 

  • Wang, Z. et al. River-groundwater interaction affected species composition and diversity perpendicular to a regulated river in an arid riparian zone. Glob. Ecol. Conserv. 27, e01595 (2021).

    Google Scholar 

  • López-López, E., Sedeño-Díaz, J. E., Mendoza-Martínez, E., Gómez-Ruiz, A. & Ramírez, E. M. Water quality and macroinvertebrate community in dryland streams: The case of the Tehuacán-Cuicatlán Biosphere Reserve (México) facing climate change. Water (Switzerland) 11, 1376 (2019).

    Google Scholar 

  • O’Connor, N. A. The effects of habitat complexity on the macroinvertebrates colonising wood substrates in a lowland stream. Oecologia 85, 504–512 (1991).

    ADS 
    PubMed 

    Google Scholar 

  • Milner, A. M. & Gloyne-Phillips, I. T. The role of riparian vegetation and woody debris in the development of macroinvertebrate assemblages in streams. River Res. Appl. 21, 403–420 (2005).

    Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Google Scholar 

  • Malmqvist, B. & Hoffsten, P.-O. Influence of drainage from old mine deposits on benthic macroinvertebrate communities in central Swedish streams. Water Res. 33, 2415–2423 (1999).

    CAS 

    Google Scholar 

  • Jost, L. Independence of alpha and beta diversities. Ecology 91, 1969–1974 (2010).

    PubMed 

    Google Scholar 

  • Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8, 1175–1182 (2005).

    PubMed 

    Google Scholar 

  • Jerves-Cobo, R. et al. Biological impact assessment of sewage outfalls in the urbanized area of the Cuenca River basin (Ecuador) in two different seasons. Limnologica 71, 8–28 (2018).

    CAS 

    Google Scholar 

  • US Environmental Protection Agency. National Recommended Water Quality Criteria-Aquatic Life Criteria Table. Arsenic. (US Environmental Protection Agency, 1995).

  • DeNicola, D. M. & Lellock, A. J. Nutrient limitation of algal periphyton in streams along an acid mine drainage gradient. J. Phycol. 51, 739–749 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Younos, T. & Schreiber, M. The Handbook of Environmental Chemistry 68. Tamim Younos, Madeline Schreiber, Katarina Kosič Ficco-Karst Water Environment-Springer International Publishing (2019).pdf. (Springer, 2019).

  • Robles, I. et al. Characterization and remediation of soils and sediments polluted with Mercury: Occurrence, transformations, environmental considerations and San Joaquin’s Sierra Gorda case. in Environmental Risk Assessment of Soil Contamination. https://doi.org/10.5772/57284. (InTech, 2014).

  • Hernández-Silva, G. et al. Presencia Del Hg total En Una Relación Suelo-Planta-Atmósfera Al Sur De La Sierra Gorda De Querétaro, México. TIP Rev. Espec. Ciencias Químico-Biol. 15, 5–15 (2012).

    Google Scholar 

  • Campos, E. M. P. & Muñoz, A. J. H. Minas y mineros: Presencia de metales en sedimentos y restos humanos al sur de la sierra gorda de Querétaro en México. Chungara 45, 161–176 (2013).

    Google Scholar 

  • Carrillo-Martínez, M. & Suter-Cargneluti, M. Tectónica de los alrededores de Zimapán, Hidalgo y Querétaro, Libro Guía de la excursión geológica a la región de Zimapán y áreas circundantes, estados de Hidalgo y Querétaro, Hidalgo, México. in VI Convención Geológica Nacional México, DF, Society Geológica Mexico. 1–20. (1982).

  • Allan, J. D. Stream ecology: Structure and function of running waters. Stream Ecol. Struct. Funct. Run. Waters https://doi.org/10.2307/2261644 (2007).

    Article 

    Google Scholar 

  • Trang, N. T. T., Shrestha, S., Shrestha, M., Datta, A. & Kawasaki, A. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok). Sci. Total Environ. 576, 586–598 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Khatri, N. & Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 8, 23–39 (2015).

    CAS 

    Google Scholar 

  • Simões, N. R. et al. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758, 3–17 (2015).

    Google Scholar 

  • Dallas, H. F. & Rivers-Moore, N. A. Critical thermal maxima of aquatic macroinvertebrates: Towards identifying bioindicators of thermal alteration. Hydrobiologia 679, 61–76 (2012).

    Google Scholar 

  • Struijs, J., De Zwart, D., Posthuma, L., Leuven, R. S. & Huijbregts, M. A. Field sensitivity distribution of macroinvertebrates for phosphorus in inland waters. Integr. Environ. Assess. Manag. 7, 280–286 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Molina, C. I. et al. Transfer of mercury and methylmercury along macroinvertebrate food chains in a floodplain lake of the Beni River, Bolivian Amazonia. Sci. Total Environ. 408, 3382–3391 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Corkum, L. D. Patterns of benthic invertebrate assemblages in rivers of northwestern North America. Freshw. Biol. 21, 191–205 (1989).

    Google Scholar 

  • Dalu, T. et al. Assessing drivers of benthic macroinvertebrate community structure in African highland streams: An exploration using multivariate analysis. Sci. Total Environ. 601–602, 1340–1348 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Eriksen, T. E. et al. A global perspective on the application of riverine macroinvertebrates as biological indicators in Africa, South-Central America, Mexico and Southern Asia. Ecol. Indic. 126, 107609 (2021).

    Google Scholar 

  • Mercado-Garcia, D. et al. Assessing the freshwater quality of a large-scale mining watershed: The need for integrated approaches. Water 11, 1797 (2019).

    CAS 

    Google Scholar 

  • Gerhardt, A., Janssens De Bisthoven, L. & Soares, A. M. V. M. Effects of acid mine drainage and acidity on the activity of Choroterpes picteti (Ephemeroptera: Leptophlebiidae). Arch. Environ. Contam. Toxicol. 48, 450–458 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Qu, X., Wu, N., Tang, T., Cai, Q. & Park, Y.-S. Effects of heavy metals on benthic macroinvertebrate communities in high mountain streams. Ann. Limnol. Int. J. Limnol. 46, 291–302 (2010).

    Google Scholar 

  • Soucek, D. J., Denson, B. C., Schmidt, T. S., Cherry, D. S. & Zipper, C. E. Impaired Acroneuria sp. (Plecoptera, Perlidae) populations associated with aluminum contamination in neutral pH surface waters. Arch. Environ. Contam. Toxicol. 42, 416–422 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Ankley, G. T. Evaluation of metal/acid-volatile sulfide relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates. Environ. Toxicol. Chem. 15, 2138–2146 (1996).

    CAS 

    Google Scholar 

  • Croteau, M. N., Luoma, S. N. & Stewart, A. R. Trophic transfer of metals along freshwater food webs: Evidence of cadmium biomagnification in nature. Limnol. Oceanogr. 50, 1511–1519 (2005).

    ADS 
    CAS 

    Google Scholar 

  • Specht, W. L., Cherry, D. S., Lechleitner, R. A. & Cairns, J. Structural, functional, and recovery responses of stream invertebrates to fly ash effluent. Can. J. Fish. Aquat. Sci. 41, 884–896 (1984).

    CAS 

    Google Scholar 

  • Corbi, J. J., Froehlich, C. G., Strixino, S. T. & Dos Santos, A. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation. Quim. Nova 33, 644–648 (2010).

    CAS 

    Google Scholar 

  • Poff, N. L., Bledsoe, B. P. & Cuhaciyan, C. O. Hydrologic variation with land use across the contiguous United States: Geomorphic and ecological consequences for stream ecosystems. Geomorphology 79, 264–285 (2006).

    ADS 

    Google Scholar 

  • Chang, F. H., Lawrence, J. E., Rios-Touma, B. & Resh, V. H. Tolerance values of benthic macroinvertebrates for stream biomonitoring: Assessment of assumptions underlying scoring systems worldwide. Environ. Monit. Assess. 186, 2135–2149 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Brittain, J. E. Life History Strategies in Ephemeroptera and Plecoptera. in Mayflies and Stoneflies: Life Histories and Biology. 1–12. https://doi.org/10.1007/978-94-009-2397-3_1 (Springer Netherlands, 1990).

  • Bispo, P. C., Oliveira, L. G., Bini, L. M. & Sousa, K. G. Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of central Brazil: Environmental factors influencing the distribution and abundance of immatures. Braz. J. Biol. 66, 611–622 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Jacobsen, D. Tropical high-altitude streams. in Tropical Stream Ecology. 219–256. https://doi.org/10.1016/B978-012088449-0.50010-8 (Elsevier, 2008).

  • Jacobsen, D., Rostgaard, S. & Vasconez, J. J. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?. Freshw. Biol. 48, 2025–2032 (2003).

    Google Scholar 

  • Courtney, L. A. & Clements, W. H. Assessing the influence of water and substratum quality on benthic macroinvertebrate communities in a metal-polluted stream: An experimental approach. Freshw. Biol. 47, 1766–1778 (2002).

    CAS 

    Google Scholar 

  • Buss, D. F. & Salles, F. F. Using Baetidae species as biological indicators of environmental degradation in a Brazilian river basin. Environ. Monit. Assess. 130, 365–372 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Ristau, K., Faupel, M. & Traunspurger, W. The effects of nutrient enrichment on a freshwater meiofaunal assemblage. Freshw. Biol. 57, 824–834 (2012).

    CAS 

    Google Scholar 

  • Cornelis, R. & Nordberg, M. General chemistry, sampling, analytical methods, and speciation. in Handbook on the Toxicology of Metals. 11–38. https://doi.org/10.1016/B978-012369413-3/50057-4 (Elsevier, 2007).

  • Santore, R. C., Di Toro, D. M., Paquin, P. R., Allen, H. E. & Meyer, J. S. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ. Toxicol. Chem. 20, 2397–2402 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Kozlova, T., Wood, C. M. & McGeer, J. C. The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model. Aquat. Toxicol. 91, 221–228 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Valdez, R., Guzmán-Aranda, J. C., Abarca, F. J., Tarango-Arámbula, L. A. & Sánchez, F. C. Wildlife conservation and management in Mexico. Wildl. Soc. Bull. 34, 270–282 (2006).

    Google Scholar 

  • INEGI. Por Actividad Económica. https://www.inegi.org.mx/temas/pib/. Accessed 6 Jan 2021. (2020).

  • García, E. Modificaciones Al Sistema de Classificación Climática de Koppen. (Institute of Geography, UNAM, 1988).

  • HACH. User Manual—HACH DR 3900. in 1–148 (2013).

  • APHA. Standard Methods for the Examination of Water and Wastewater. (Association, American Public Health, 2005).

  • NMX-AA-051-SCFI-2001. Análisis de agua—Determinación de metales por absorción atómica en aguas naturales, potables, residuales y residuales tratadas. Norma Mex. 1–47 (2001).

  • Helsel, D. R. Less than obvious: Statistical treatment of data below the detection limit. Environ. Sci. Technol. 24, 1766–1774 (1990).

    ADS 
    CAS 

    Google Scholar 

  • Barbour, M. T., Stribling, J. B. & Verdonschot, P. F. M. The multihabitat approach of USEPA’s rapid bioassessment protocols: benthic macroinvertebrates. Limnetica 25, 839–850 (2006).

    Google Scholar 

  • USEPA. National Rivers and Streams Assessment 2018/19: Field Operations Manual—Wadeable. Vol. EPA-841-B-. 169. (2017).

  • Michaud, J. P. & Wierenga, M. Estimating Discharge and Stream Flows (Ecology Publication, 2005).

    Google Scholar 

  • Hering, D., Moog, O., Sandin, L. & Verdonschot, P. F. M. Overview and application of the AQEM assessment system. Hydrobiologia 516, 1–20 (2004).

    Google Scholar 

  • Merrit, R. & Cummins, K. W. An Introduction to the Aquatic Insects of North America 3rd edn. (Kendall Hunt, 1996).

    Google Scholar 

  • Thorp, J. H. & Covich, A. P. Ecology and Classification of North American Freshwater Invertebrates (Academic Press, 2009).

    Google Scholar 

  • Bueno-Soria, J. Guía de Identificación Ilustrada de Losgéneros de Larvas de Insectos del Orden Trichoptera de México (Universidad Nacional Autónoma de México, 2010).

    Google Scholar 

  • Springer, M., Ramírez, A. & Hanson, P. Macroinvertebrados de agua dulce I. Rev. Biol. Trop. 58, 198 (2010).

    Google Scholar 

  • Hamada, N., Thorp, J. H. & Rogers, D. C. Thorp and Covich’s Freshwater Invertebrates (Elsevier, 2018).

    Google Scholar 

  • Jost, L. et al. Partitioning diversity for conservation analyses. Divers. Distrib. 16, 65–76 (2010).

    Google Scholar 

  • Lavit, C., Escoufier, Y. & Sabatier, R. The ACT (STATIS method) J q G G Fl { q K q *. Comput. Stat. Data Anal. 18, 97–119 (1994).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Tuning in to invisible waves on the JET tokamak

    Using artificial intelligence to find anomalies hiding in massive datasets