Marqués, M. J., Martínez-Conde, E., Rovira, J. V. & Ordóñez, S. Heavy metals pollution of aquatic ecosystems in the vicinity of a recently closed underground lead-zinc mine (Basque Country, Spain). Environ. Geol. 40, 1125–1137 (2001).
Bud, I., Duma, S., Denuţ, I. & Taşcu, I. Water pollution due to mining activity. Causes and consequences Wasserverunreinigung aufgrund von Bergbauaktivitäten. Ursachen und Konsequenzen. BHM Berg- Hüttenmännische Monatsh. 152, 326–328 (2007).
Google Scholar
Ugya, Y. Assessment of ambient air quality resulting from anthropogenic emissions. Am. J. Prev. Med. Public Health https://doi.org/10.5455/ajpmph.20171030080402 (2017).
Google Scholar
Dore, E. Environment and society: Long-term trends in Latin American mining. Environ. Hist. Camb. 6, 1–29 (2000).
Zhou, Q. et al. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 22, 925 (2020).
Graesser, J., Aide, T. M., Grau, H. R. & Ramankutty, N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ. Res. Lett. 10, 034017 (2015).
Google Scholar
Ramírez, A., Pringle, C. M. & Wantzen, K. M. Tropical stream conservation. Trop. Stream Ecol. https://doi.org/10.1016/B978-012088449-0.50012-1 (2008).
Google Scholar
Uriarte, M., Yackulic, C. B., Lim, Y. & Arce-Nazario, J. A. Influence of land use on water quality in a tropical landscape: A multi-scale analysis. Landsc. Ecol. 26, 1151–1164 (2011).
Google Scholar
White, M. & Barquera, S. Mexico adopts food warning labels, why now?. Health Syst. Reform 6, e1752063 (2020).
Google Scholar
Koleff, P. et al. Biodiversity in Mexico: State of knowledge. in Global Biodiversity. 285–337. https://doi.org/10.1201/9780429433634-8. (Apple Academic Press, 2018).
Armendáriz-Villegas, E. J. et al. Metal mining and natural protected areas in Mexico: Geographic overlaps and environmental implications. Environ. Sci. Policy 48, 9–19 (2015).
Montoya-Lopera, P. et al. New geological, geochronological and geochemical characterization of the San Dimas mineral system: Evidence for a telescoped Eocene-Oligocene Ag/Au deposit in the Sierra Madre Occidental, Mexico. Ore Geol. Rev. 118, 103195 (2020).
LeuraVicencio, A. K., CarrizalesYañez, L. & RazoSoto, I. Mercury pollution assessment of mining wastes and soils from former silver amalgamation area in North-Central Mexico. Rev. Int. Contam. Ambient. 33, 655–669 (2017).
Veiga, M. M. Introducing New Technologies for Abatement of Global Mercury Pollution in Latin America. United Nations Industrial Development Organization (UNIDO), University of British Columbia (UBC), Center of Mineral Technology (CETEM) (UNIDO, UBC, CETEM, 1997).
Camacho, A. et al. Mercury mining in Mexico: I. Community engagement to improve health outcomes from artisanal mining. Ann. Glob. Health 82, 149 (2016).
Google Scholar
IUCN. Benefits Beyond Boundaries: Proceedings of the Vth IUCN World Parks Congress : Durban, South Africa. 8–17 September 2003. (Iucn, 2005).
González, S. O., Almeida, C. A., Calderón, M., Mallea, M. A. & González, P. Assessment of the water self-purification capacity on a river affected by organic pollution: Application of chemometrics in spatial and temporal variations. Environ. Sci. Pollut. Res. 21, 10583–10593 (2014).
Rico-Sánchez, A. E. et al. Biological diversity in protected areas: Not yet known but already threatened. Glob. Ecol. Conserv. 22, e01006 (2020).
Harvey, C. A. et al. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv. Biol. 22, 8–15 (2008).
Google Scholar
Messerli, B., Grosjean, M. & Vuille, M. Water availability, protected areas, and natural resources in the Andean desert altiplano. Mt. Res. Dev. 17, 229–238 (1997).
Servicio Geológico Mexicano. Conoce GeoInfoMex en 3D. https://www.gob.mx/sgm/articulos/conoce-el-sistema-de-consulta-de-informacion-geocientifica-geoinfomex?idiom=es. Accessed 18 Feb 2021. (2019).
Resh, V. H. Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ. Monit. Assess. 138, 131–138 (2008).
Google Scholar
Ruiz-Picos, R. A., Sedeño-Díaz, J. E. & López-López, E. Calibrating and validating the biomonitoring working party (BMWP) index for the bioassessment of water quality in neotropical streams. in Water Quality (InTech, 2017).
Oertel, N. & Salánki, J. Biomonitoring and bioindicators in aquatic ecosystems. in Modern Trends in Applied Aquatic Ecology. 219–246. https://doi.org/10.1007/978-1-4615-0221-0_10. (Springer, 2011).
Goodyear, K. L. & McNeill, S. Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: A review. Sci. Total Environ. 229, 1–19 (1999).
Google Scholar
Clements, W. H. Small-scale experiments support causal relationships between metal contamination and macroinvertebrate community responses. Ecol. Appl. 14, 954–967 (2004).
Michailova, P., Warchałowska-Śliwa, E., Szarek-Gwiazda, E. & Kownacki, A. Does biodiversity of macroinvertebrates and genome response of Chironomidae larvae (Diptera) reflect heavy metal pollution in a small pond?. Environ. Monit. Assess. 184, 1–14 (2012).
Google Scholar
Wright, I. A. & Ryan, M. M. Impact of mining and industrial pollution on stream macroinvertebrates: Importance of taxonomic resolution, water geochemistry and EPT indices for impact detection. Hydrobiologia 772, 103–115 (2016).
Google Scholar
Wright, I. A. & Burgin, S. Comparison of sewage and coal-mine wastes on stream macroinvertebrates within an otherwise clean upland catchment, Southeastern Australia. Water Air Soil Pollut. 204, 227–241 (2009).
Google Scholar
Batty, L. C. The potential importance of mine sites for biodiversity. Mine Water Environ. 24, 101–103 (2005).
Dolédec, S. & Chessel, D. Co-inertia analysis: An alternative method for studying species–environment relationships. Freshw. Biol. 31, 277–294 (1994).
Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4. Multivariate Analysis of Ecological Data with ade4. https://doi.org/10.1007/978-1-4939-8850-1. (Springer, 2018).
Dodds, W. K., Clements, W. H., Gido, K., Hilderbrand, R. H. & King, R. S. Thresholds, breakpoints, and nonlinearity in freshwaters as related to management. J. N. Am. Benthol. Soc. 29, 988–997 (2010).
Sundermann, A., Gerhardt, M., Kappes, H. & Haase, P. Stressor prioritisation in riverine ecosystems: Which environmental factors shape benthic invertebrate assemblage metrics?. Ecol. Indic. 27, 83–96 (2013).
Gutiérrez-Yurrita, P. J., García-Serrano, L. A. & Plata, M. R. Is ecotourism a viable option to generate wealth in brittle environments? A reflection on the case of the Sierra Gorda Biosphere Reserve, México. WIT Trans. Ecol. Environ. 161, 141–151 (2012).
Vinson, M. R. Long-term dynamics of an invertebrate assemblage downstream from a large dam. Ecol. Appl. 11, 711–730 (2001).
Torres-Olvera, M. J., Durán-Rodríguez, O. Y., Torres-García, U., Pineda-López, R. & Ramírez-Herrejón, J. P. Validation of an index of biological integrity based on aquatic macroinvertebrates assemblages in two subtropical basins of central Mexico. Lat. Am. J. Aquat. Res. 46, 945–960 (2018).
Carabias Lillo, J., Provencio, E., de la Maza Elvira, J. & Ruiz Corzo, M. Programa de Manejo Reserva de la Biosfera Sierra Gorda. (México, Instituto Nacional de Ecologıa, SEMARNAT, 1999).
Macedo, D. R. et al. The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landsc. Ecol. 29, 1001–1016 (2014).
Dutra, S. L. & Callisto, M. Macroinvertebrates as tadpole food: Importance and body size relationships. Rev. Bras. Zool. 22, 923–927 (2005).
Wang, Z. et al. River-groundwater interaction affected species composition and diversity perpendicular to a regulated river in an arid riparian zone. Glob. Ecol. Conserv. 27, e01595 (2021).
López-López, E., Sedeño-Díaz, J. E., Mendoza-Martínez, E., Gómez-Ruiz, A. & Ramírez, E. M. Water quality and macroinvertebrate community in dryland streams: The case of the Tehuacán-Cuicatlán Biosphere Reserve (México) facing climate change. Water (Switzerland) 11, 1376 (2019).
O’Connor, N. A. The effects of habitat complexity on the macroinvertebrates colonising wood substrates in a lowland stream. Oecologia 85, 504–512 (1991).
Google Scholar
Milner, A. M. & Gloyne-Phillips, I. T. The role of riparian vegetation and woody debris in the development of macroinvertebrate assemblages in streams. River Res. Appl. 21, 403–420 (2005).
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).
Malmqvist, B. & Hoffsten, P.-O. Influence of drainage from old mine deposits on benthic macroinvertebrate communities in central Swedish streams. Water Res. 33, 2415–2423 (1999).
Google Scholar
Jost, L. Independence of alpha and beta diversities. Ecology 91, 1969–1974 (2010).
Google Scholar
Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8, 1175–1182 (2005).
Google Scholar
Jerves-Cobo, R. et al. Biological impact assessment of sewage outfalls in the urbanized area of the Cuenca River basin (Ecuador) in two different seasons. Limnologica 71, 8–28 (2018).
Google Scholar
US Environmental Protection Agency. National Recommended Water Quality Criteria-Aquatic Life Criteria Table. Arsenic. (US Environmental Protection Agency, 1995).
DeNicola, D. M. & Lellock, A. J. Nutrient limitation of algal periphyton in streams along an acid mine drainage gradient. J. Phycol. 51, 739–749 (2015).
Google Scholar
Younos, T. & Schreiber, M. The Handbook of Environmental Chemistry 68. Tamim Younos, Madeline Schreiber, Katarina Kosič Ficco-Karst Water Environment-Springer International Publishing (2019).pdf. (Springer, 2019).
Robles, I. et al. Characterization and remediation of soils and sediments polluted with Mercury: Occurrence, transformations, environmental considerations and San Joaquin’s Sierra Gorda case. in Environmental Risk Assessment of Soil Contamination. https://doi.org/10.5772/57284. (InTech, 2014).
Hernández-Silva, G. et al. Presencia Del Hg total En Una Relación Suelo-Planta-Atmósfera Al Sur De La Sierra Gorda De Querétaro, México. TIP Rev. Espec. Ciencias Químico-Biol. 15, 5–15 (2012).
Campos, E. M. P. & Muñoz, A. J. H. Minas y mineros: Presencia de metales en sedimentos y restos humanos al sur de la sierra gorda de Querétaro en México. Chungara 45, 161–176 (2013).
Carrillo-Martínez, M. & Suter-Cargneluti, M. Tectónica de los alrededores de Zimapán, Hidalgo y Querétaro, Libro Guía de la excursión geológica a la región de Zimapán y áreas circundantes, estados de Hidalgo y Querétaro, Hidalgo, México. in VI Convención Geológica Nacional México, DF, Society Geológica Mexico. 1–20. (1982).
Allan, J. D. Stream ecology: Structure and function of running waters. Stream Ecol. Struct. Funct. Run. Waters https://doi.org/10.2307/2261644 (2007).
Google Scholar
Trang, N. T. T., Shrestha, S., Shrestha, M., Datta, A. & Kawasaki, A. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok). Sci. Total Environ. 576, 586–598 (2017).
Google Scholar
Khatri, N. & Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 8, 23–39 (2015).
Google Scholar
Simões, N. R. et al. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758, 3–17 (2015).
Dallas, H. F. & Rivers-Moore, N. A. Critical thermal maxima of aquatic macroinvertebrates: Towards identifying bioindicators of thermal alteration. Hydrobiologia 679, 61–76 (2012).
Struijs, J., De Zwart, D., Posthuma, L., Leuven, R. S. & Huijbregts, M. A. Field sensitivity distribution of macroinvertebrates for phosphorus in inland waters. Integr. Environ. Assess. Manag. 7, 280–286 (2011).
Google Scholar
Molina, C. I. et al. Transfer of mercury and methylmercury along macroinvertebrate food chains in a floodplain lake of the Beni River, Bolivian Amazonia. Sci. Total Environ. 408, 3382–3391 (2010).
Google Scholar
Corkum, L. D. Patterns of benthic invertebrate assemblages in rivers of northwestern North America. Freshw. Biol. 21, 191–205 (1989).
Dalu, T. et al. Assessing drivers of benthic macroinvertebrate community structure in African highland streams: An exploration using multivariate analysis. Sci. Total Environ. 601–602, 1340–1348 (2017).
Google Scholar
Eriksen, T. E. et al. A global perspective on the application of riverine macroinvertebrates as biological indicators in Africa, South-Central America, Mexico and Southern Asia. Ecol. Indic. 126, 107609 (2021).
Mercado-Garcia, D. et al. Assessing the freshwater quality of a large-scale mining watershed: The need for integrated approaches. Water 11, 1797 (2019).
Google Scholar
Gerhardt, A., Janssens De Bisthoven, L. & Soares, A. M. V. M. Effects of acid mine drainage and acidity on the activity of Choroterpes picteti (Ephemeroptera: Leptophlebiidae). Arch. Environ. Contam. Toxicol. 48, 450–458 (2005).
Google Scholar
Qu, X., Wu, N., Tang, T., Cai, Q. & Park, Y.-S. Effects of heavy metals on benthic macroinvertebrate communities in high mountain streams. Ann. Limnol. Int. J. Limnol. 46, 291–302 (2010).
Soucek, D. J., Denson, B. C., Schmidt, T. S., Cherry, D. S. & Zipper, C. E. Impaired Acroneuria sp. (Plecoptera, Perlidae) populations associated with aluminum contamination in neutral pH surface waters. Arch. Environ. Contam. Toxicol. 42, 416–422 (2002).
Google Scholar
Ankley, G. T. Evaluation of metal/acid-volatile sulfide relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates. Environ. Toxicol. Chem. 15, 2138–2146 (1996).
Google Scholar
Croteau, M. N., Luoma, S. N. & Stewart, A. R. Trophic transfer of metals along freshwater food webs: Evidence of cadmium biomagnification in nature. Limnol. Oceanogr. 50, 1511–1519 (2005).
Google Scholar
Specht, W. L., Cherry, D. S., Lechleitner, R. A. & Cairns, J. Structural, functional, and recovery responses of stream invertebrates to fly ash effluent. Can. J. Fish. Aquat. Sci. 41, 884–896 (1984).
Google Scholar
Corbi, J. J., Froehlich, C. G., Strixino, S. T. & Dos Santos, A. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation. Quim. Nova 33, 644–648 (2010).
Google Scholar
Poff, N. L., Bledsoe, B. P. & Cuhaciyan, C. O. Hydrologic variation with land use across the contiguous United States: Geomorphic and ecological consequences for stream ecosystems. Geomorphology 79, 264–285 (2006).
Google Scholar
Chang, F. H., Lawrence, J. E., Rios-Touma, B. & Resh, V. H. Tolerance values of benthic macroinvertebrates for stream biomonitoring: Assessment of assumptions underlying scoring systems worldwide. Environ. Monit. Assess. 186, 2135–2149 (2014).
Google Scholar
Brittain, J. E. Life History Strategies in Ephemeroptera and Plecoptera. in Mayflies and Stoneflies: Life Histories and Biology. 1–12. https://doi.org/10.1007/978-94-009-2397-3_1 (Springer Netherlands, 1990).
Bispo, P. C., Oliveira, L. G., Bini, L. M. & Sousa, K. G. Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of central Brazil: Environmental factors influencing the distribution and abundance of immatures. Braz. J. Biol. 66, 611–622 (2006).
Google Scholar
Jacobsen, D. Tropical high-altitude streams. in Tropical Stream Ecology. 219–256. https://doi.org/10.1016/B978-012088449-0.50010-8 (Elsevier, 2008).
Jacobsen, D., Rostgaard, S. & Vasconez, J. J. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?. Freshw. Biol. 48, 2025–2032 (2003).
Courtney, L. A. & Clements, W. H. Assessing the influence of water and substratum quality on benthic macroinvertebrate communities in a metal-polluted stream: An experimental approach. Freshw. Biol. 47, 1766–1778 (2002).
Google Scholar
Buss, D. F. & Salles, F. F. Using Baetidae species as biological indicators of environmental degradation in a Brazilian river basin. Environ. Monit. Assess. 130, 365–372 (2007).
Google Scholar
Ristau, K., Faupel, M. & Traunspurger, W. The effects of nutrient enrichment on a freshwater meiofaunal assemblage. Freshw. Biol. 57, 824–834 (2012).
Google Scholar
Cornelis, R. & Nordberg, M. General chemistry, sampling, analytical methods, and speciation. in Handbook on the Toxicology of Metals. 11–38. https://doi.org/10.1016/B978-012369413-3/50057-4 (Elsevier, 2007).
Santore, R. C., Di Toro, D. M., Paquin, P. R., Allen, H. E. & Meyer, J. S. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ. Toxicol. Chem. 20, 2397–2402 (2001).
Google Scholar
Kozlova, T., Wood, C. M. & McGeer, J. C. The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model. Aquat. Toxicol. 91, 221–228 (2009).
Google Scholar
Valdez, R., Guzmán-Aranda, J. C., Abarca, F. J., Tarango-Arámbula, L. A. & Sánchez, F. C. Wildlife conservation and management in Mexico. Wildl. Soc. Bull. 34, 270–282 (2006).
INEGI. Por Actividad Económica. https://www.inegi.org.mx/temas/pib/. Accessed 6 Jan 2021. (2020).
García, E. Modificaciones Al Sistema de Classificación Climática de Koppen. (Institute of Geography, UNAM, 1988).
HACH. User Manual—HACH DR 3900. in 1–148 (2013).
APHA. Standard Methods for the Examination of Water and Wastewater. (Association, American Public Health, 2005).
NMX-AA-051-SCFI-2001. Análisis de agua—Determinación de metales por absorción atómica en aguas naturales, potables, residuales y residuales tratadas. Norma Mex. 1–47 (2001).
Helsel, D. R. Less than obvious: Statistical treatment of data below the detection limit. Environ. Sci. Technol. 24, 1766–1774 (1990).
Google Scholar
Barbour, M. T., Stribling, J. B. & Verdonschot, P. F. M. The multihabitat approach of USEPA’s rapid bioassessment protocols: benthic macroinvertebrates. Limnetica 25, 839–850 (2006).
USEPA. National Rivers and Streams Assessment 2018/19: Field Operations Manual—Wadeable. Vol. EPA-841-B-. 169. (2017).
Michaud, J. P. & Wierenga, M. Estimating Discharge and Stream Flows (Ecology Publication, 2005).
Hering, D., Moog, O., Sandin, L. & Verdonschot, P. F. M. Overview and application of the AQEM assessment system. Hydrobiologia 516, 1–20 (2004).
Merrit, R. & Cummins, K. W. An Introduction to the Aquatic Insects of North America 3rd edn. (Kendall Hunt, 1996).
Thorp, J. H. & Covich, A. P. Ecology and Classification of North American Freshwater Invertebrates (Academic Press, 2009).
Bueno-Soria, J. Guía de Identificación Ilustrada de Losgéneros de Larvas de Insectos del Orden Trichoptera de México (Universidad Nacional Autónoma de México, 2010).
Springer, M., Ramírez, A. & Hanson, P. Macroinvertebrados de agua dulce I. Rev. Biol. Trop. 58, 198 (2010).
Hamada, N., Thorp, J. H. & Rogers, D. C. Thorp and Covich’s Freshwater Invertebrates (Elsevier, 2018).
Jost, L. et al. Partitioning diversity for conservation analyses. Divers. Distrib. 16, 65–76 (2010).
Lavit, C., Escoufier, Y. & Sabatier, R. The ACT (STATIS method) J q G G Fl { q K q *. Comput. Stat. Data Anal. 18, 97–119 (1994).
Google Scholar
Source: Ecology - nature.com