in

Precipitation effects on grassland plant performance are lessened by hay harvest

  • Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Collins, S. L. et al. Stability of tallgrass prairie during a 19-year increase in growing season precipitation. Funct. Ecol. 26, 1450–1459 (2012).

    Google Scholar 

  • Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).

    PubMed 

    Google Scholar 

  • IPCC. IPCC. (Cambridge University Press, 2013) https://doi.org/10.1017/cbo9781107415324.

  • Knapp, A. K. et al. Differential sensitivity to regional-scale drought in six central US grasslands. Oecologia 177, 949–957 (2015).

    PubMed 
    ADS 

    Google Scholar 

  • Smith, M. D. An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).

    Google Scholar 

  • Zeppel, M. J. B., Wilks, J. V. & Lewis, J. D. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11, 3083–3093 (2014).

    ADS 

    Google Scholar 

  • Frank, D. A. Drought effects on above- and belowground production of a grazed temperate grassland ecosystem. Oecologia 152, 131–139 (2007).

    PubMed 
    ADS 

    Google Scholar 

  • Skinner, R. H., Hanson, J. D., Hutchinson, G. L. & Schuman, G. E. Response of C3 and C4 grasses to supplemental summer precipitation. J. Range Manag. 55, 517–522 (2002).

    Google Scholar 

  • Shi, Z. et al. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest. Nat. Commun. 7, 1–6 (2016).

    ADS 

    Google Scholar 

  • Zavaleta, E. S. et al. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr. 73, 585–604 (2003).

    Google Scholar 

  • Prather, R. M., Castillioni, K., Welti, E. A. R., Kaspari, M. & Souza, L. Abiotic factors and plant biomass, not plant diversity, strongly shape grassland arthropods under drought conditions. Ecology 101, 1–7 (2020).

    Google Scholar 

  • Nippert, J. B., Knapp, A. K. & Briggs, J. M. Intra-annual rainfall variability and grassland productivity: Can the past predict the future?. Plant Ecol. 184, 65–74 (2006).

    Google Scholar 

  • La Pierre, K. J. et al. Explaining temporal variation in above-ground productivity in a mesic grassland: The role of climate and flowering. J. Ecol. 99, 1250–1262 (2011).

    Google Scholar 

  • Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).

    PubMed 

    Google Scholar 

  • Grant, K., Kreyling, J., Heilmeier, H., Beierkuhnlein, C. & Jentsch, A. Extreme weather events and plant–plant interactions: Shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecol. Res. 29, 991–1001 (2014).

    Google Scholar 

  • Brooker, R. W. et al. Facilitation in plant communities: The past, the present, and the future. J. Ecol. 96, 18–34 (2008).

    MathSciNet 

    Google Scholar 

  • Schöb, C., Armas, C. & Pugnaire, F. I. Direct and indirect interactions co-determine species composition in nurse plant systems. Oikos 122, 1371–1379 (2013).

    Google Scholar 

  • Gross, N., Börger, L., Duncan, R. P. & Hulme, P. E. Functional differences between alien and native species: Do biotic interactions determine the functional structure of highly invaded grasslands?. Funct. Ecol. 27, 1262–1272 (2013).

    Google Scholar 

  • van der Merwe, S., Greve, M., Olivier, B. & le Roux, P. C. Testing the role of functional trait expression in plant–plant facilitation. Funct. Ecol. https://doi.org/10.1111/1365-2435.13681 (2020).

    Article 

    Google Scholar 

  • Tremmel, D. C. & Bazzaz, F. A. How neighbor canopy architecture affects target plant performance. Ecology 74, 2114–2124 (1993).

    Google Scholar 

  • Weiher, E. & Keddy, P. A. In Ecological Assembly Rules: Perspective, Advances, Retreats. (eds. Weiher, E. & Keddy, P. A.) (Cambridge University Press, 2001).

  • Anten, N. P. R. & Hirose, T. Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow. J. Ecol. 87, 583–597 (1999).

    Google Scholar 

  • Yann, H., Pascal, A. & Niklaus, A. H. Competition for light causes plant. Science 324, 636–638 (2009).

    Google Scholar 

  • Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems 2, 95–113 (1999).

    Google Scholar 

  • Brooker, R. W. Plant–plant interactions and environmental change. New Phytol. 171, 271–284 (2006).

    PubMed 

    Google Scholar 

  • Michalet, R. & Pugnaire, F. I. Facilitation in communities: Underlying mechanisms, community and ecosystem implications. Funct. Ecol. 30, 3–9 (2016).

    Google Scholar 

  • Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).

    Google Scholar 

  • Saccone, P., Delzon, S., Jean-Philippe, P., Brun, J. J. & Michalet, R. The role of biotic interactions in altering tree seedling responses to an extreme climatic event. J. Veg. Sci. 20, 403–414 (2009).

    Google Scholar 

  • Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289 (2009).

    PubMed 

    Google Scholar 

  • Borer, E. T., Seabloom, E. W., Gruner, D. S., Harpole, W. S. & Hillebrand, H. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • de Sassi, C. & Tylianakis, J. M. Climate change disproportionately increases herbivore over plant or parasitoid biomass. PLoS One 7, e40557 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Strauss, S. Y. & Ivalú Cacho, N. Nowhere to run, nowhere to hide: The importance of enemies and apparency in adaptation to harsh soil environments. Am. Nat. 182, E1 (2013).

    PubMed 

    Google Scholar 

  • Brady, K. U., Kruckeberg, A. R. & Bradshaw, H. D. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst. 36, 243–266 (2005).

    Google Scholar 

  • Moran, M. S. et al. Soil evaporation response to Lehmann lovegrass (Eragrostis lehmanniana) invasion in a semiarid watershed. Agric. For. Meteorol. 149, 2133–2142 (2009).

    ADS 

    Google Scholar 

  • Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).

    Google Scholar 

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    PubMed 
    ADS 

    Google Scholar 

  • Gross, N., Suding, K. N. & Lavorel, S. Leaf dry matter content and lateral spread predict response to land use change for six subalpine grassland species. J. Veg. Sci. 18, 289–300 (2007).

    Google Scholar 

  • Quiroga, R., Golluscio, R., Blanco, L. & Fernandez, R. Aridity and grazing as convergent selective forces: An experiment with an Arid Chaco bunchgrass. Ecol. Appl. https://doi.org/10.1890/09-0641 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Blumenthal, D. M. et al. Traits link drought resistance with herbivore defence and plant economics in semi-arid grasslands: The central roles of phenology and leaf dry matter content. J. Ecol. 108, 2336–2351 (2020).

    Google Scholar 

  • Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: A phylogenetically controlled screening experiment. New Phytol. 185, 780–791 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • N’Guessan, M. & Hartnett, D. C. Differential responses to defoliation frequency in little bluestem (Schizachyrium scoparium) in tallgrass prairie: Implications for herbivory tolerance and avoidance. Plant Ecol. 212, 1275–1285 (2011).

    Google Scholar 

  • Castillioni, K. et al. Drought mildly reduces plant dominance in a temperate prairie ecosystem across years. Ecol. Evol. 10, 6702–6713 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ivalú Cacho, N. & Strauss, S. Y. Occupation of bare habitats, an evolutionary precursor to soil specialization in plants. Proc. Natl. Acad. Sci. U. S. A. 111, 15132–15137 (2014).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Cottingham, K. L., Lennon, J. T. & Brown, B. L. Knowing when to draw the line: Designing more informative ecological experiments. Front. Ecol. Environ. 3, 145–152 (2005).

    Google Scholar 

  • Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob. Change Biol. 19, 2753–2764 (2013).

    ADS 

    Google Scholar 

  • Braun-Blanquet, J. Plant Sociology: The Study of Plant Communities. (1932).

  • Shipley, B. The AIC model selection method applied to path analytic models compared using ad-separation test. Ecology 94, 560–564 (2013).

    PubMed 

    Google Scholar 

  • Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Google Scholar 

  • Grace, J. B. In Structural Equation Modeling and Natural Systems. (Cambridge University Press, 2006). https://doi.org/10.1017/CBO9780511617799.

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R.C. nlme: Linear and nonlinear mixed effects models. R package version 3.1 111 (2013).

  • Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. Ecol. Austral 67, 1–48 (2015).

    Google Scholar 

  • Pearson, D. E., Ortega, Y. K. & Maron, J. L. The tortoise and the hare: reducing resource availability shifts competitive balance between plant species. J. Ecol. 105, 999–1009 (2017).

    CAS 

    Google Scholar 

  • Maron, J. L. & Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. R. Soc. B Biol. Sci. 273, 2575–2584 (2006).

    Google Scholar 

  • Bertness, M. & Callaway, R. M. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Ploughe, L. W. et al. Community Response to Extreme Drought (CRED): A framework for drought-induced shifts in plant–plant interactions. New Phytol. 222, 52–69 (2019).

    PubMed 

    Google Scholar 

  • Klanderud, K., Vandvik, V. & Goldberg, D. The importance of Biotic vs. Abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS One 10, 1–15 (2015).

    Google Scholar 

  • Maricle, B. R., Caudle, K. L. & Adler, P. B. Influence of water availability on photosynthesis, water potential, leaf δ 13 C, and phenology in dominant C 4 grasses in Kansas, USA. Trans. Kans. Acad. Sci. 118, 173–193 (2015).

    Google Scholar 

  • Collins, S. L., Knapp, A. K., Briggs, J. M., Blair, J. M. & Steinauer, E. M. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280, 745–747 (1998).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Gornish, E. S. & Tylianakis, J. Community shifts under climate change: Mechanisms at multiple scales. Am. J. Bot. 100, 1422–1434 (2013).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Catabolic protein degradation in marine sediments confined to distinct archaea

    Study reveals chemical link between wildfire smoke and ozone depletion