Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).
Google Scholar
Collins, S. L. et al. Stability of tallgrass prairie during a 19-year increase in growing season precipitation. Funct. Ecol. 26, 1450–1459 (2012).
Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).
Google Scholar
IPCC. IPCC. (Cambridge University Press, 2013) https://doi.org/10.1017/cbo9781107415324.
Knapp, A. K. et al. Differential sensitivity to regional-scale drought in six central US grasslands. Oecologia 177, 949–957 (2015).
Google Scholar
Smith, M. D. An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).
Zeppel, M. J. B., Wilks, J. V. & Lewis, J. D. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11, 3083–3093 (2014).
Google Scholar
Frank, D. A. Drought effects on above- and belowground production of a grazed temperate grassland ecosystem. Oecologia 152, 131–139 (2007).
Google Scholar
Skinner, R. H., Hanson, J. D., Hutchinson, G. L. & Schuman, G. E. Response of C3 and C4 grasses to supplemental summer precipitation. J. Range Manag. 55, 517–522 (2002).
Shi, Z. et al. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest. Nat. Commun. 7, 1–6 (2016).
Google Scholar
Zavaleta, E. S. et al. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr. 73, 585–604 (2003).
Prather, R. M., Castillioni, K., Welti, E. A. R., Kaspari, M. & Souza, L. Abiotic factors and plant biomass, not plant diversity, strongly shape grassland arthropods under drought conditions. Ecology 101, 1–7 (2020).
Nippert, J. B., Knapp, A. K. & Briggs, J. M. Intra-annual rainfall variability and grassland productivity: Can the past predict the future?. Plant Ecol. 184, 65–74 (2006).
La Pierre, K. J. et al. Explaining temporal variation in above-ground productivity in a mesic grassland: The role of climate and flowering. J. Ecol. 99, 1250–1262 (2011).
Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).
Google Scholar
Grant, K., Kreyling, J., Heilmeier, H., Beierkuhnlein, C. & Jentsch, A. Extreme weather events and plant–plant interactions: Shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecol. Res. 29, 991–1001 (2014).
Brooker, R. W. et al. Facilitation in plant communities: The past, the present, and the future. J. Ecol. 96, 18–34 (2008).
Google Scholar
Schöb, C., Armas, C. & Pugnaire, F. I. Direct and indirect interactions co-determine species composition in nurse plant systems. Oikos 122, 1371–1379 (2013).
Gross, N., Börger, L., Duncan, R. P. & Hulme, P. E. Functional differences between alien and native species: Do biotic interactions determine the functional structure of highly invaded grasslands?. Funct. Ecol. 27, 1262–1272 (2013).
van der Merwe, S., Greve, M., Olivier, B. & le Roux, P. C. Testing the role of functional trait expression in plant–plant facilitation. Funct. Ecol. https://doi.org/10.1111/1365-2435.13681 (2020).
Google Scholar
Tremmel, D. C. & Bazzaz, F. A. How neighbor canopy architecture affects target plant performance. Ecology 74, 2114–2124 (1993).
Weiher, E. & Keddy, P. A. In Ecological Assembly Rules: Perspective, Advances, Retreats. (eds. Weiher, E. & Keddy, P. A.) (Cambridge University Press, 2001).
Anten, N. P. R. & Hirose, T. Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow. J. Ecol. 87, 583–597 (1999).
Yann, H., Pascal, A. & Niklaus, A. H. Competition for light causes plant. Science 324, 636–638 (2009).
Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems 2, 95–113 (1999).
Brooker, R. W. Plant–plant interactions and environmental change. New Phytol. 171, 271–284 (2006).
Google Scholar
Michalet, R. & Pugnaire, F. I. Facilitation in communities: Underlying mechanisms, community and ecosystem implications. Funct. Ecol. 30, 3–9 (2016).
Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).
Saccone, P., Delzon, S., Jean-Philippe, P., Brun, J. J. & Michalet, R. The role of biotic interactions in altering tree seedling responses to an extreme climatic event. J. Veg. Sci. 20, 403–414 (2009).
Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289 (2009).
Google Scholar
Borer, E. T., Seabloom, E. W., Gruner, D. S., Harpole, W. S. & Hillebrand, H. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).
Google Scholar
de Sassi, C. & Tylianakis, J. M. Climate change disproportionately increases herbivore over plant or parasitoid biomass. PLoS One 7, e40557 (2012).
Google Scholar
Strauss, S. Y. & Ivalú Cacho, N. Nowhere to run, nowhere to hide: The importance of enemies and apparency in adaptation to harsh soil environments. Am. Nat. 182, E1 (2013).
Google Scholar
Brady, K. U., Kruckeberg, A. R. & Bradshaw, H. D. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst. 36, 243–266 (2005).
Moran, M. S. et al. Soil evaporation response to Lehmann lovegrass (Eragrostis lehmanniana) invasion in a semiarid watershed. Agric. For. Meteorol. 149, 2133–2142 (2009).
Google Scholar
Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
Google Scholar
Gross, N., Suding, K. N. & Lavorel, S. Leaf dry matter content and lateral spread predict response to land use change for six subalpine grassland species. J. Veg. Sci. 18, 289–300 (2007).
Quiroga, R., Golluscio, R., Blanco, L. & Fernandez, R. Aridity and grazing as convergent selective forces: An experiment with an Arid Chaco bunchgrass. Ecol. Appl. https://doi.org/10.1890/09-0641 (2010).
Google Scholar
Blumenthal, D. M. et al. Traits link drought resistance with herbivore defence and plant economics in semi-arid grasslands: The central roles of phenology and leaf dry matter content. J. Ecol. 108, 2336–2351 (2020).
Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: A phylogenetically controlled screening experiment. New Phytol. 185, 780–791 (2010).
Google Scholar
N’Guessan, M. & Hartnett, D. C. Differential responses to defoliation frequency in little bluestem (Schizachyrium scoparium) in tallgrass prairie: Implications for herbivory tolerance and avoidance. Plant Ecol. 212, 1275–1285 (2011).
Castillioni, K. et al. Drought mildly reduces plant dominance in a temperate prairie ecosystem across years. Ecol. Evol. 10, 6702–6713 (2020).
Google Scholar
Ivalú Cacho, N. & Strauss, S. Y. Occupation of bare habitats, an evolutionary precursor to soil specialization in plants. Proc. Natl. Acad. Sci. U. S. A. 111, 15132–15137 (2014).
Google Scholar
Cottingham, K. L., Lennon, J. T. & Brown, B. L. Knowing when to draw the line: Designing more informative ecological experiments. Front. Ecol. Environ. 3, 145–152 (2005).
Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob. Change Biol. 19, 2753–2764 (2013).
Google Scholar
Braun-Blanquet, J. Plant Sociology: The Study of Plant Communities. (1932).
Shipley, B. The AIC model selection method applied to path analytic models compared using ad-separation test. Ecology 94, 560–564 (2013).
Google Scholar
Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
Grace, J. B. In Structural Equation Modeling and Natural Systems. (Cambridge University Press, 2006). https://doi.org/10.1017/CBO9780511617799.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R.C. nlme: Linear and nonlinear mixed effects models. R package version 3.1 111 (2013).
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. Ecol. Austral 67, 1–48 (2015).
Pearson, D. E., Ortega, Y. K. & Maron, J. L. The tortoise and the hare: reducing resource availability shifts competitive balance between plant species. J. Ecol. 105, 999–1009 (2017).
Google Scholar
Maron, J. L. & Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. R. Soc. B Biol. Sci. 273, 2575–2584 (2006).
Bertness, M. & Callaway, R. M. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).
Google Scholar
Ploughe, L. W. et al. Community Response to Extreme Drought (CRED): A framework for drought-induced shifts in plant–plant interactions. New Phytol. 222, 52–69 (2019).
Google Scholar
Klanderud, K., Vandvik, V. & Goldberg, D. The importance of Biotic vs. Abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS One 10, 1–15 (2015).
Maricle, B. R., Caudle, K. L. & Adler, P. B. Influence of water availability on photosynthesis, water potential, leaf δ 13 C, and phenology in dominant C 4 grasses in Kansas, USA. Trans. Kans. Acad. Sci. 118, 173–193 (2015).
Collins, S. L., Knapp, A. K., Briggs, J. M., Blair, J. M. & Steinauer, E. M. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280, 745–747 (1998).
Google Scholar
Gornish, E. S. & Tylianakis, J. Community shifts under climate change: Mechanisms at multiple scales. Am. J. Bot. 100, 1422–1434 (2013).
Google Scholar
Source: Ecology - nature.com