in

A near-natural experiment on factors influencing larval drift in Salamandra salamandra

  • Müller, K. Investigations on the organic drift in north Swedish streams. Rep. Inst. Freshw. Res. Drottningholm 35, 133–148 (1954).

    Google Scholar 

  • Müller, K. Stream drift as a chronobiological phenomenon in running water ecosystems. Annu. Rev. Ecol. Syst. 5, 309–323 (1974).

    Article 

    Google Scholar 

  • Waters, T. F. Interpretation of invertebrate drift in streams. Ecology 46, 327–334. https://doi.org/10.2307/1936336 (1965).

    Article 

    Google Scholar 

  • Waters, T. F. The drift of stream insects. Annu. Rev. Entomol. 17, 253–272 (1972).

    Article 

    Google Scholar 

  • Thiesmeier, B. Der Feuersalamander (Laurenti, 2004).

    Google Scholar 

  • Hughes, D. A. Some factors affecting drift and upstream movements of Gammarus pulex. Ecology 51, 301–305. https://doi.org/10.2307/1933668 (1970).

    Article 

    Google Scholar 

  • Humphries, S. & Ruxton, G. D. Is there really a drift paradox?. J. Anim. Ecol. 71, 151–154 (2002).

    Article 

    Google Scholar 

  • Altig, R. & McDiarmid, R. W. In Tadpoles: The Biology of Anuran Larvae (eds McDiarmid, R. W. & Altig, R.) 24–51 (University of Chicago Press, 2000).

    Google Scholar 

  • Sherratt, E., Vidal-García, M., Anstis, M. & Keogh, J. S. Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent. Nat. Ecol. Evol. 1, 1385–1391. https://doi.org/10.1038/s41559-017-0268-6 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Griffiths, R. A. Newts and Salamanders of Europe (Poyser Natural History, 1996).

    Google Scholar 

  • Cecala, K. K., Price, S. J. & Dorcas, M. E. Evaluating existing movement hypotheses in linear systems using larval stream salamanders. Can. J. Zool. 87, 292–298. https://doi.org/10.1139/z09-013 (2009).

    Article 

    Google Scholar 

  • Grant, E. H. C., Nichols, J. D., Lowe, W. H. & Fagan, W. F. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks. Proc. Natl. Acad. Sci. USA 107, 6936–6940. https://doi.org/10.1073/pnas.1000266107 (2010).

    ADS 
    Article 

    Google Scholar 

  • Lowe, W. H. Linking dispersal to local population dynamics: A case study using a headwater salamander system. Ecology 84, 2145–2154. https://doi.org/10.1890/0012-9658(2003)084[2145:LDTLPD]2.0.CO;2 (2003).

    Article 

    Google Scholar 

  • Bruce, R. C. Upstream and downstream movements of Eurycea bislineata and other salamanders in a southern appalachian stream. Herpetologica 42, 149–155 (1986).

    Google Scholar 

  • Thiesmeier, B. Untersuchungen zur Phänologie und Populationsdynamik des Feuersalamanders (Salamandra salamandra terrestris Lacépède, 1788) im Niederbergische Land (BRD). Zool. Jahrbücher Abteilung für Systematik Ökologie Geographie der Tiere 117, 331–353 (1990).

    Google Scholar 

  • Thiesmeier, B. & Schuhmacher, H. Causes of larval drift of the fire salamander, Salamandra salamandra terrestris, and its effects on population dynamics. Oecologia 82, 259–263. https://doi.org/10.1007/BF00323543 (1990).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Reinhardt, T., Baldauf, L., Ilic, M. & Fink, P. Cast away: Drift as the main determinant for larval survival in western fire salamanders (Salamandra salamandra) in headwater streams. J. Zool. 306, 171–179 (2018).

    Article 

    Google Scholar 

  • Baumgartner, N., Waringer, A. & Waringer, J. Hydraulic microdistribution patterns of larval fire salamanders (Salamandra salamandra salamandra) in the Weidlingbach near Vienna, Austria. Freshw. Biol. 41, 31–41. https://doi.org/10.1046/j.1365-2427.1999.00378.x (1999).

    Article 

    Google Scholar 

  • Krause, E. T., Steinfartz, S. & Caspers, B. A. Poor nutritional conditions during the early larval stage reduce risk-taking activities of fire salamander larvae (Salamandra salamandra). Ethology 117, 416–421. https://doi.org/10.1111/j.1439-0310.2011.01886.x (2011).

    Article 

    Google Scholar 

  • Veith, M. et al. Drift compensation in larval European fire salamanders, Salamandra salamandra (Amphibia: Urodela)?. Hydrobiologia 828, 315–325. https://doi.org/10.1007/s10750-018-3820-8 (2019).

    Article 

    Google Scholar 

  • Arnold, A. Zur Verbreitung des Feuersalamanders im Tal der Zwickauer Mulde. Veröffentlichungen aus dem Museum für Naturkunde Karl-Marx-Stadt 71–79 (1983).

  • Thiesmeier, B. Ökologie des Feuersalamanders (Westarp Wissenschaften, 1992).

    Google Scholar 

  • Thiesmeier-Hornberg, B. Zur Ökologie und Populationsdynamik des Feuersalamanders (Salamandra salamandra terrestris Lacépède, 1788) im niederbergischen Land unter besonderer Berücksichtigung der Larvalphase. PhD thesis, Universität-Gesamthochschule Essen (1988).

  • Thiesmeier, B. & Grossenbacher, K. Salamandra salamandra (Linnaeus, 1758)—Feuersalamander. In Die Amphibien und Reptilien Europas. Schwanzlurche IIB (eds Thiesmeier, B. & Grossenbacher, K.) 1059–1132 (Aula, 2004).

    Google Scholar 

  • Reques, R. & Tejedo, M. Intraspecific aggressive behaviour in fire salamander larvae (Salamandra salamandra): The effects of density and body size. Herpetol. J. 6, 15–19 (1996).

    Google Scholar 

  • Thiesmeier, B. & Günther, R. Feuersalamander: Salamandra salamandra (Linnaeus, 1758). In Die Amphibien und Reptilien Deutschlands (ed. Günther, R.) 82–104 (Fischer, 1996).

    Google Scholar 

  • Wagner, N., Pfrommer, J. & Veith, M. Comparison of different methods to estimate abundances of larval fire salamanders (Salamandra salamandra) in first-order creeks. Salamandra 56, 265–274 (2020).

    Google Scholar 

  • Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).

    Article 

    Google Scholar 

  • White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).

    Article 

    Google Scholar 

  • Otis, D. L., Burnham, K. P., White, G. C. & Anderson, D. R. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62, 3–135 (1978).

    MATH 

    Google Scholar 

  • Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860–873 (1996).

    MathSciNet 
    Article 

    Google Scholar 

  • Seber, G. A. A note on the multiple-recapture census. Biometrika 52, 249–259 (1965).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Jolly, G. M. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52, 225–247 (1965).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Cormack, R. Estimates of survival from the sighting of marked animals. Biometrika 51, 429–438 (1964).

    Article 

    Google Scholar 

  • Razali, N. M. & Wah, Y. B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2, 21–33 (2011).

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

    Google Scholar 

  • Segev, O. & Blaustein, L. Influence of water velocity and predation risk on fire salamander (Salamandra infraimmaculata) larval drift among temporary pools in ephemeral streams. Freshw. Sci. 33, 950–957. https://doi.org/10.1086/676634 (2014).

    Article 

    Google Scholar 

  • Montori, A., Llorente, G. & Richter-Boix, À. Habitat features affecting the small-scale distribution and longitudinal migration patterns of Calotriton asper in a Pre-Pyrenean population. Amphibia-Reptilia 29, 371–381. https://doi.org/10.1163/156853808785112048 (2008).

    Article 

    Google Scholar 

  • Zakrzewski, M. Effect of definite temperature ranges on development metamorphosis and procreation of the spotted salamander larvae, Salamandra salamandra (L.). Acta Biol. Crac. Ser. Zool. 29, 77–83 (1987).

    Google Scholar 

  • Degani, G., Goldenberg, S. & Warburg, M. R. Cannibalistic phenomena in Salamandra salamandra larvae in certain water bodies and under experimental conditions. Hydrobiologia 75, 123–128. https://doi.org/10.1007/BF00007425 (1980).

    Article 

    Google Scholar 

  • Manenti, R., Ficetola, G. F. & De Bernardi, F. Water, stream morphology and landscape: Complex habitat determinants for the fire salamander Salamandra salamandra. Amphibia-Reptilia 30, 7–15. https://doi.org/10.1163/156853809787392766 (2009).

    Article 

    Google Scholar 

  • Klewen, R. Landsalamander Europa: Teil1. Die Gattungen Salamandra und Mertensiella 2nd edn. (Ziemsen-Verlag, 1991).

    Google Scholar 

  • Orth, R., Zscheischler, J. & Seneviratne, S. I. Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci. Rep. 6, 1–8 (2016).

    Article 

    Google Scholar 

  • Degani, G. Temperature selection in Salamandra salamandra (L.) larvae and juveniles from different habitats. Biol. Behav. 9, 175–183 (1984).

    Google Scholar 


  • Source: Ecology - nature.com

    Catabolic protein degradation in marine sediments confined to distinct archaea

    Study reveals chemical link between wildfire smoke and ozone depletion