in

An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas

  • Trenberth, K. E. & Jones, P. D. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 235–335 (Cambridge Univ. Press, 2007).

  • Linderholm, H. W. Growing season changes in the last century. Agr. For. Meteorol. 137, 1–14 (2006).

    Google Scholar 

  • Yang, B. et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl Acad. Sci. USA 114, 6966–6971 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, M., Tang, Y., Chen, J. & Yang, W. Specification of thermal growing season in temperate China from 1960 to 2009. Clim. Change 114, 783–798 (2012).

    Google Scholar 

  • Zhou, B., Zhai, P., Chen, Y. & Yu, R. Projected changes of thermal growing season over Northern Eurasia in a 1.5 °C and 2 °C warming world. Environ. Res. Lett. 13, 35004 (2018).

    Google Scholar 

  • Barichivich, J., Briffa, K. R., Osborn, T. J., Melvin, T. M. & Caesar, J. Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Glob. Biogeochem. Cycles 26, B4015 (2012).

    Google Scholar 

  • Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).

    Google Scholar 

  • Gonsamo, A., Chen, J. M. & Ooi, Y. W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol. 24, 2117–2128 (2018).

    Google Scholar 

  • Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).

    Google Scholar 

  • Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. & Reich, P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proc. Natl Acad. Sci. USA 117, 10397–10405 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19, 3167–3183 (2013).

    Google Scholar 

  • Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).

    PubMed 

    Google Scholar 

  • Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359–363 (2017).

    CAS 

    Google Scholar 

  • Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B 365, 3227–3246 (2010).

    Google Scholar 

  • Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    Google Scholar 

  • Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol. 25, 2382–2395 (2019).

    Google Scholar 

  • Xu, C., Liu, H., Williams, A. P., Yin, Y. & Wu, X. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Glob. Change Biol. 22, 2852–2860 (2016).

    Google Scholar 

  • Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, B3018 (2007).

    Google Scholar 

  • Buermann, W., Bikash, P. R., Jung, M., Burn, D. H. & Reichstein, M. Earlier springs decrease peak summer productivity in North American boreal forests. Environ. Res. Lett. 8, 24027 (2013).

    Google Scholar 

  • Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).

    Google Scholar 

  • Huang, J. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Sci. Bull. 62, 804–812 (2017).

    Google Scholar 

  • Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 17, 696–707 (2008).

    Google Scholar 

  • Lenz, A., Vitasse, Y., Hoch, G. & Körner, C. Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit. J. Ecol. 102, 1537–1548 (2014).

    Google Scholar 

  • Zeng, Q., Rossi, S., Yang, B., Qin, C. & Li, G. Environmental drivers for cambial reactivation of Qilian junipers (Juniperus przewalskii) in a semi-arid region of northwestern China. Atmosphere 11, 232 (2020).

    Google Scholar 

  • Ren, P. et al. Growth rate rather than growing season length determines wood biomass in dry environments. Agr. For. Meteorol. 271, 46–53 (2019).

    Google Scholar 

  • Sanginés De Cárcer, P. et al. Vapor-pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol. 24, 1108–1122 (2017).

    Google Scholar 

  • Zhang, J. et al. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. Catena 196, 104936 (2021).

    Google Scholar 

  • Huang, J., Deslauriers, A. & Rossi, S. Xylem formation can be modeled statistically as a function of primary growth and cambium activity. New Phytol. 203, 831–841 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Rossi, S., Girard, M. J. & Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Change Biol. 20, 2261–2271 (2014).

    Google Scholar 

  • Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Pasho, E., Camarero, J. J. & Vicente-Serrano, S. M. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees 26, 1875–1886 (2012).

    Google Scholar 

  • Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).

    CAS 

    Google Scholar 

  • Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).

    CAS 

    Google Scholar 

  • Körner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107–114 (2015).

    PubMed 

    Google Scholar 

  • Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).

    PubMed 

    Google Scholar 

  • Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Deslauriers, A. & Morin, H. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19, 402–408 (2005).

    Google Scholar 

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Google Scholar 

  • Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 8, 825–828 (2018).

    CAS 

    Google Scholar 

  • Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 185, 471–480 (2010).

    PubMed 

    Google Scholar 

  • Fu, Y. H. et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob. Change Biol. 20, 3743–3755 (2014).

    Google Scholar 

  • Wu, X. et al. Uneven winter snow influence on tree growth across temperate China. Glob. Change Biol. 25, 144–154 (2018).

    Google Scholar 

  • Wang, X. et al. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Change Biol. 24, 1651–1662 (2018).

    Google Scholar 

  • Adams, H. D. et al. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees. Glob. Change Biol. 21, 4210–4220 (2015).

    Google Scholar 

  • He, W., Liu, H., Qi, Y., Liu, F. & Zhu, X. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration. Glob. Change Biol. 26, 3627–3638 (2020).

    Google Scholar 

  • Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2012).

    Google Scholar 

  • Vitasse, Y. et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Change Biol. 25, 3781–3792 (2019).

    Google Scholar 

  • Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).

    Google Scholar 

  • Babst, F., Poulter, B., Bodesheim, P., Mahecha, M. D. & Frank, D. C. Improved tree-ring archives will support earth-system science. Nat. Ecol. Evol. 1, 8 (2017).

    PubMed 

    Google Scholar 

  • Elmore, A. J., Guinn, S. M., Minsley, B. J. & Richardson, A. D. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Change Biol. 18, 656–674 (2012).

    Google Scholar 

  • Kannenberg, S. A. et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol. Lett. 22, 119–127 (2018).

    PubMed 

    Google Scholar 

  • Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).

    PubMed 

    Google Scholar 

  • Gao, S. et al. Dynamic responses of tree-ring growth to multiple dimensions of drought. Glob. Change Biol. 24, 5380–5390 (2018).

    Google Scholar 

  • Peltier, D. M. P. & Ogle, K. Tree growth sensitivity to climate is temporally variable. Ecol. Lett. 23, 1561–1572 (2020).

    PubMed 

    Google Scholar 

  • Wilmking, M. et al. Global assessment of relationships between climate and tree growth. Glob. Change Biol. 26, 3212–3220 (2020).

    Google Scholar 

  • Seftigen, K., Frank, D. C., Björklund, J., Babst, F. & Poulter, B. The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob. Ecol. Biogeogr. 27, 1352–1365 (2018).

    Google Scholar 

  • Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/

  • Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

    Google Scholar 

  • Frich, P. L. et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19, 193–212 (2002).

    Google Scholar 

  • Selyaninov, G. T. About climate agricultural estimation (in Russian). Proc. Agric. Meteorol. 20, 165–177 (1928).

    Google Scholar 

  • Streiner, D. L. Finding our way: an introduction to path analysis. Can. J. Psychiatry 50, 115–122 (2005).

    PubMed 

    Google Scholar 

  • Fox, J., Nie, Z. & Byrnes, J. sem: Structural equation models. R package version 3.1-9 https://CRAN.R-project.org/package=sem (2017).

  • Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).

    Google Scholar 

  • Bagozzi, R. P. & Yi, Y. Specification, evaluation, and interpretation of structural equation models. J. Acad. Mark. Sci. 40, 8–34 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Catabolic protein degradation in marine sediments confined to distinct archaea

    Study reveals chemical link between wildfire smoke and ozone depletion