in

An integrated multiple driver mesocosm experiment reveals the effect of global change on planktonic food web structure

  • IPCC Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) 151 (IPCC, Geneva, Switzerland, 2014).

  • Grizzetti, B., Bouraoui, F. & Aloe, A. Changes of nitrogen and phosphorus loads to European seas. Glob. Change Biol. 18, 769–782 (2012).

    Google Scholar 

  • Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Duarte, C. M. Global change and the future ocean: a grand challenge for marine sciences. Front. Mar. Sci. 1, 1–16 (2014).

    Google Scholar 

  • Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305, 1609–1612 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Rose, J. M. et al. Effects of increased pCO2 and temperature on the North Atlantic spring bloom. II. Microzooplankton abundance and grazing. Mar. Ecol. Prog. Ser. 388, 27–40 (2009).

    CAS 

    Google Scholar 

  • Sommer, U., Paul, C. & Moustaka-Gouni, M. Warming and ocean acidification effects on phytoplankton—from species shifts to size shifts within species in a mesocosm experiment. PLoS ONE 10, 1–17 (2015).

    Google Scholar 

  • Garzke, J., Hansen, T., Ismar, S. M. H. & Sommer, U. Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS ONE 11, 1–22 (2016).

    Google Scholar 

  • Horn, H. G., Boersma, M., Garzke, J., Sommer, U. & Aberle, N. High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community. Mar. Biol. 167, 1–17 (2020).

    Google Scholar 

  • Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob. Change Biol. 24, 2239–2261 (2018).

    Google Scholar 

  • Stewart, R. I. A. et al. Mesocosm experiments as a tool for ecological provided for ecological climate-change research. In Advances in Ecological Research/Guy Woodward (ed. O’Gorman, E. J.) 71–181 (Academic Press, 2013).

  • Rost, B. & Riebesell, U. Coccolithophores and the biological pump: responses to environmental changes. In Coccolithophores: From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 99–125 (Springer, 2004).

  • Peter, K. H. & Sommer, U. Phytoplankton cell size reduction in response to warming mediated by nutrient limitation. PLoS ONE 8, 1–6 (2013).

    Google Scholar 

  • Bermúdez, J. R., Riebesell, U., Larsen, A. & Winder, M. Ocean acidification reduces transfer of essential biomolecules in a natural plankton community. Sci. Rep. 6, 1–8 (2016).

    Google Scholar 

  • Peter, K. H. & Sommer, U. Interactive effect of warming, nitrogen and phosphorus limitation on phytoplankton cell size. Ecol. Evolution 5, 1011–1024 (2015).

    Google Scholar 

  • Alvarez-Fernandez, S. et al. Plankton responses to ocean acidification: the role of nutrient limitation. Prog. Oceanogr. 165, 11–18 (2018).

    Google Scholar 

  • Stramski, D., Sciandra, A. & Claustre, H. Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana. Limnol. Oceanogr. 47, 392–403 (2002).

    CAS 

    Google Scholar 

  • Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu. Rev. Mar. Sci. 7, 241–264 (2015).

    Google Scholar 

  • Peñuelas, J., Sardans, J., Rivas‐Ubach, A. & Janssens, I. A. The human-induced imbalance between C, N and P in Earth’s life system. Glob. Change Biol. 18, 3–6 (2011).

    Google Scholar 

  • Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–63. (1983).

    Google Scholar 

  • Legendre, L. & Le Fèvre, J. Microbial food webs and the export of biogenic carbon in oceans. Aquat. Microb. Ecol. 9, 69–77 (1995).

    Google Scholar 

  • Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Langer, G., Nehrke, G., Probert, I., Ly, J. & Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6, 2637–2646 (2009).

    CAS 

    Google Scholar 

  • Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M. & Brown, C. W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 36, 316–325 (2014).

    CAS 

    Google Scholar 

  • Hopkins, J., Henson, S. A., Painter, S. C., Tyrrell, T. & Poulton, A. J. Phenological characteristics of global coccolithophore blooms. Glob. Biogeochemical Cycles 29, 239–253 (2015).

    CAS 

    Google Scholar 

  • León, P. et al. Seasonal variability of the carbonate system and coccolithophore Emiliania huxleyi at a Scottish Coastal Observatory monitoring site. Estuar., Coast. Shelf Sci. 202, 302–314 (2018).

    Google Scholar 

  • Rivero-Calle, S., Gnanadesikan, A., Del Castillo, C. E., Balch, W. M. & Guikema, S. D. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science 350, 1533–1537 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Purdie, D. A. & Finch, M. S. Impact of a coccolithophorid bloom on dissolved carbon dioxide in sea water enclosures in a Norwegian fjord. Sarsia 79, 379–387 (1994).

    Google Scholar 

  • Nejstgaard, J. C., Gismervik, I. & Solberg, P. T. Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Mar. Ecol. Prog. Ser. 147, 197–217 (1997).

    Google Scholar 

  • Leblanc, K. et al. Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom. Biogeosciences 6, 2155–2179 (2009).

    CAS 

    Google Scholar 

  • Sett, S. et al. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLoS ONE 9, e88308 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Benner, I. et al. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philos. Trans. R. Soc. B 368, 20130049 (2013).

    Google Scholar 

  • Borchard, C., Borges, A. V., Händel, N. & Engel, A. Biogeochemical response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: a chemostat study. J. Exp. Mar. Biol. Ecol. 410, 61–71 (2011).

    CAS 

    Google Scholar 

  • Harrison, P. J. et al. Geographical distribution of red and green Noctiluca scintillans. Chin. J. Oceanol. Limnol. 29, 807–831 (2011).

    Google Scholar 

  • Johns, D. G., Edwards, M., Greve, W. & SJohn, A. W. G. Increasing prevelance of the marine cladoceran Penilia avirostris (Dana, 1852) in the North Sea. Helgol. Mar. Res. 59, 215–218 (2005).

    Google Scholar 

  • O’Connor, M. I. O., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, 1–6 (2009).

    Google Scholar 

  • Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. change Biol. 21, 1025–1040 (2015).

    Google Scholar 

  • Boersma, M. et al. Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it’s hot? Ecol. Lett. 19, 45–53 (2016).

    PubMed 

    Google Scholar 

  • Anderson, T. R., Hessen, D. O., Boersma, M., Urabe, J. & Mayor, D. J. Will invertebrates require increasingly carbon-rich food in a warming world? Am. Naturalist 190, 725–742 (2017).

    Google Scholar 

  • Kirchner, M., Sahling, G., Uhlig, G., Gunkel, W. & Klings, K.-W. Does the red tide-forming dinoflagellate Noctiluca scintillans feed on bacteria? Sarsia 81, 45–55 (2015).

    Google Scholar 

  • Elbrächter, M. & Qi, Y. Aspects of Noctiluca (Dinophyceae) population dynamics. In Physiological Ecology of Harmful Algal Blooms (ed. Anderson, M. D.) 315–335 (Springer-Verlag, 1998).

  • Atienza, D., Saiz, E. & Calbet, A. Feeding ecology of the marine cladoceran Penilia avirostris: natural diet, prey selectivity and daily ration. Mar. Ecol. Prog. Ser. 315, 211–220 (2006).

    Google Scholar 

  • Zhang, S., Liu, H., Chen, B. & Chih-Jung, W. Effects of diet nutritional quality on the growth and grazing of Noctiluca scintillans. Sci. Rep. 527, 73–85 (2015).

    CAS 

    Google Scholar 

  • Reid, P. C., Borges, M. F. & Svendsen, E. A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery. Fish. Res. 50, 163–171 (2001).

    Google Scholar 

  • Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Payne, M. R. et al. Recruitment in a changing environment: the 2000s North Sea herring recruitment failure. ICES J. Mar. Sci. 66, 272–277 (2009).

    Google Scholar 

  • Perälä, T., Olsen, E. M. & Hutchings, J. A. Disentangling conditional effects of multiple regime shifts on Atlantic cod productivity. PLoS ONE 15, e0237414 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Behrenfeld, M. J., Boss, E. S. & Halsey, K. H. Phytoplankton community structuring and succession in a competition-neutral resource landscape. ISME COMMUN. 1, 1–8 (2021).

  • Monteiro, F. M. et al. Why marine phytoplankton calcify. Sci. Adv. 2, 1–14 (2016).

    Google Scholar 

  • Mayers, K. M. J. et al. The possession of coccoliths fails to deter microzooplankton grazers. Front. Mar. Sci. 7, 976 (2020).

    Google Scholar 

  • Zhao, Y. et al. Grazing by microzooplankton and copepods on the microbial food web in spring in the southern Yellow Sea, China. Mar. Life Sci. Technol. 2, 442–455 (2020).

    Google Scholar 

  • Aberle, N. et al. High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community. Biogeosciences 10, 1471–1481 (2013).

    Google Scholar 

  • Horn, H. G. et al. Low CO2 sensitivity of Microzooplankton communities in the Gullmar Fjord, Skagerrak: evidence from a long-term Mesocosm Study. PLoS ONE 11, 1–24 (2016).

    Google Scholar 

  • Chen, B., Landry, M. R., Huang, B. & Liu, H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. Oceanogr. 57, 519–526 (2012).

    CAS 

    Google Scholar 

  • Vázquez-Domínguez, E., Vaqué, D. & Gasol, J. M. Temperature effects on the heterotrophic bacteria, heterotrophic nanoflagellates, and microbial top predators of the NW Mediterranean. Aquat. Microb. Ecol. 67, 107–121 (2012).

    Google Scholar 

  • Lara, E. et al. Experimental evaluation of the warming effect on viral, bacterial and protistan communities in two contrasting Arctic systems. Aquat. Microb. Ecol. 70, 17–32 (2013).

    Google Scholar 

  • Olson, M. B., Solem, K. & Love, B. Microzooplankton grazing responds to simulated ocean acidification indirectly through changes in prey cellular characteristics. Mar. Ecol. Prog. Ser. 604, 83–97 (2018).

    CAS 

    Google Scholar 

  • Sherr, E. B. & Sherr, B. F. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28, 223–235 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Brander, K. & Kiørboe, T. Decreasing phytoplankton size adversely affects ocean food chains. Glob. Change Biol. 26, 5356–5357 (2020).

    Google Scholar 

  • Irigoien, X. et al. A high frequency time series at weathership M, Norwegian Sea, during the 1997 spring bloom: feeding of adult female Calanus finmarchicus. Mar. Ecol. Prog. Ser. 172, 127–137 (1998).

    Google Scholar 

  • Fenchel, T. The microbial loop—25 years later. J. Exp. Mar. Biol. Ecol. 366, 99–103 (2008).

    Google Scholar 

  • Aberle, N., Malzahn, A. M., Lewandowska, A. M. & Sommer, U. Some like it hot: the protozooplankton— copepod link in a warming ocean. Mar. Ecol. Prog. Ser. 519, 103–113 (2015).

    Google Scholar 

  • Berglund, J., Müren, U., Båmstedt, U. & Andersson, A. Efficiency of a phytoplankton-based and a bacteria-based food web in a pelagic marine system. Limnol. Oceanogr. 52, 121–131 (2007).

    CAS 

    Google Scholar 

  • Sherr, E. B. & Sherr, B. F. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 352, 187–197 (2007).

    Google Scholar 

  • Gifford, D. J. The protozoan-metazoan trophic link in pelagic ecosystems. J. Protozool. 38, 81–86 (1991).

    Google Scholar 

  • Rollwagen-Bollens, G. & Gifford, S. The role of protistan microzooplankton in the upper San Francisco estuary planktonic food web: source or sink? Estuaries Coasts 34, 1026–1038 (2011).

    CAS 

    Google Scholar 

  • Anjusha, A. et al. Trophic efficiency of plankton food webs: observations from the Gulf of Mannar and the Palk Bay, Southeast Coast of India. J. Mar. Syst. 115, 40–61 (2013).

    Google Scholar 

  • IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. In The Context of Strengthening the Global Response to The Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (Masson-Delmotte, V. et al (eds.) 616 (IPCC, Geneva, Switzerland, 2018).

  • Pansch, A., Winde, V., Asmus, R. & Asmus, H. Tidal benthic mesocosms simulating future climate change scenarios in the field of marine ecology. Limnol. Oceanogr.: Methods 14, 257–267 (2016).

    Google Scholar 

  • van Leeuwen, S., Tett, P., Mills, D. & van der Molen, J. Stratified and nonstratified areas in the North Sea: long-term variability and biological and policy implications. J. Geophys. Res.: Oceans 120, 4670–4686 (2015).

    Google Scholar 

  • Grasshoff, K., Kremling, K. & Ehrhardt, M. (eds). Methods of Seawater Analysis, 3rd edn. (Wiley-VCH, Weinheim, 1999).

  • Dickson, A. G. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res. 28, 609–623 (1981).

    CAS 

    Google Scholar 

  • Pierrot, D. E., Lewis, E. & Wallace, D. W. R. MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a (2006).

  • Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. 34, 1733–1743 (1987).

    CAS 

    Google Scholar 

  • Arrigo, K. R. et al. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283, 365–368 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton- Methodik. Int. Ver. für. Theoretische und Angew. Limnologie: Mitteilungen 9, 1–38 (1958).

    Google Scholar 

  • McEwen, G. F., Johnson, M. W. & Folsom, T. R. A statistical analysis of the performance of the Folsom plankton sample splitter, based upon test observations. Archiv für. Archiv Meteorologie, Geophysik und Bioklimatologie, Ser. A 7, 502–527 (1954).

    Google Scholar 

  • Sell, D. W. & Evans, M. S. A statistical analysis of subsampling and an evaluation of the Folsom plankton splitter. Hydrobiologia 94, 223–230 (1982).

    Google Scholar 

  • Boersma, M., Wiltshire, K. H., Kong, S., Greve, W. & Renz, J. Long-term change in the copepod community in the southern German Bight. J. Sea Res. 101, 41–50 (2015).

    Google Scholar 

  • Marie, D., Simon, N. & Vaulot, D. Phytoplankton cell counting by flow cytometry. Algal Culturing Tech. 1, 253–267 (2005).

    Google Scholar 

  • Hillebrand, H., Dürselen, C., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).

    Google Scholar 

  • Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).

    CAS 

    Google Scholar 

  • Putt, M. & Stoecker, D. K. An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34, 1097–1103 (1989).

    Google Scholar 

  • Beran, A. et al. Carbon content and biovolume of the heterotrophic dinoflagellate Noctiluca scintillans from the Northern Adriatic Sea. In Proceedings of the CESUM-BS 2003, Varna. 28 (Book of Abstracts, UNESCO, Paris, 2003).

  • Lee, S. & Fuhrman, J. A. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53, 1298–1303 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kraberg, A., Baumann, M. & Dürselen, C. Coastal Phytoplankton: Photo Guide for Northern European Seas (Dr. Friedrich Pfeil, München, 2010).

  • R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).


  • Source: Ecology - nature.com

    Study reveals chemical link between wildfire smoke and ozone depletion

    Can the world meet global climate targets without coordinated global action?