IPCC Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) 151 (IPCC, Geneva, Switzerland, 2014).
Grizzetti, B., Bouraoui, F. & Aloe, A. Changes of nitrogen and phosphorus loads to European seas. Glob. Change Biol. 18, 769–782 (2012).
Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
Google Scholar
Duarte, C. M. Global change and the future ocean: a grand challenge for marine sciences. Front. Mar. Sci. 1, 1–16 (2014).
Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305, 1609–1612 (2004).
Google Scholar
Rose, J. M. et al. Effects of increased pCO2 and temperature on the North Atlantic spring bloom. II. Microzooplankton abundance and grazing. Mar. Ecol. Prog. Ser. 388, 27–40 (2009).
Google Scholar
Sommer, U., Paul, C. & Moustaka-Gouni, M. Warming and ocean acidification effects on phytoplankton—from species shifts to size shifts within species in a mesocosm experiment. PLoS ONE 10, 1–17 (2015).
Garzke, J., Hansen, T., Ismar, S. M. H. & Sommer, U. Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS ONE 11, 1–22 (2016).
Horn, H. G., Boersma, M., Garzke, J., Sommer, U. & Aberle, N. High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community. Mar. Biol. 167, 1–17 (2020).
Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob. Change Biol. 24, 2239–2261 (2018).
Stewart, R. I. A. et al. Mesocosm experiments as a tool for ecological provided for ecological climate-change research. In Advances in Ecological Research/Guy Woodward (ed. O’Gorman, E. J.) 71–181 (Academic Press, 2013).
Rost, B. & Riebesell, U. Coccolithophores and the biological pump: responses to environmental changes. In Coccolithophores: From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 99–125 (Springer, 2004).
Peter, K. H. & Sommer, U. Phytoplankton cell size reduction in response to warming mediated by nutrient limitation. PLoS ONE 8, 1–6 (2013).
Bermúdez, J. R., Riebesell, U., Larsen, A. & Winder, M. Ocean acidification reduces transfer of essential biomolecules in a natural plankton community. Sci. Rep. 6, 1–8 (2016).
Peter, K. H. & Sommer, U. Interactive effect of warming, nitrogen and phosphorus limitation on phytoplankton cell size. Ecol. Evolution 5, 1011–1024 (2015).
Alvarez-Fernandez, S. et al. Plankton responses to ocean acidification: the role of nutrient limitation. Prog. Oceanogr. 165, 11–18 (2018).
Stramski, D., Sciandra, A. & Claustre, H. Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana. Limnol. Oceanogr. 47, 392–403 (2002).
Google Scholar
Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu. Rev. Mar. Sci. 7, 241–264 (2015).
Peñuelas, J., Sardans, J., Rivas‐Ubach, A. & Janssens, I. A. The human-induced imbalance between C, N and P in Earth’s life system. Glob. Change Biol. 18, 3–6 (2011).
Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–63. (1983).
Legendre, L. & Le Fèvre, J. Microbial food webs and the export of biogenic carbon in oceans. Aquat. Microb. Ecol. 9, 69–77 (1995).
Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011).
Google Scholar
Langer, G., Nehrke, G., Probert, I., Ly, J. & Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6, 2637–2646 (2009).
Google Scholar
Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M. & Brown, C. W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 36, 316–325 (2014).
Google Scholar
Hopkins, J., Henson, S. A., Painter, S. C., Tyrrell, T. & Poulton, A. J. Phenological characteristics of global coccolithophore blooms. Glob. Biogeochemical Cycles 29, 239–253 (2015).
Google Scholar
León, P. et al. Seasonal variability of the carbonate system and coccolithophore Emiliania huxleyi at a Scottish Coastal Observatory monitoring site. Estuar., Coast. Shelf Sci. 202, 302–314 (2018).
Rivero-Calle, S., Gnanadesikan, A., Del Castillo, C. E., Balch, W. M. & Guikema, S. D. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science 350, 1533–1537 (2015).
Google Scholar
Purdie, D. A. & Finch, M. S. Impact of a coccolithophorid bloom on dissolved carbon dioxide in sea water enclosures in a Norwegian fjord. Sarsia 79, 379–387 (1994).
Nejstgaard, J. C., Gismervik, I. & Solberg, P. T. Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Mar. Ecol. Prog. Ser. 147, 197–217 (1997).
Leblanc, K. et al. Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom. Biogeosciences 6, 2155–2179 (2009).
Google Scholar
Sett, S. et al. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLoS ONE 9, e88308 (2014).
Google Scholar
Benner, I. et al. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philos. Trans. R. Soc. B 368, 20130049 (2013).
Borchard, C., Borges, A. V., Händel, N. & Engel, A. Biogeochemical response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: a chemostat study. J. Exp. Mar. Biol. Ecol. 410, 61–71 (2011).
Google Scholar
Harrison, P. J. et al. Geographical distribution of red and green Noctiluca scintillans. Chin. J. Oceanol. Limnol. 29, 807–831 (2011).
Johns, D. G., Edwards, M., Greve, W. & SJohn, A. W. G. Increasing prevelance of the marine cladoceran Penilia avirostris (Dana, 1852) in the North Sea. Helgol. Mar. Res. 59, 215–218 (2005).
O’Connor, M. I. O., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, 1–6 (2009).
Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. change Biol. 21, 1025–1040 (2015).
Boersma, M. et al. Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it’s hot? Ecol. Lett. 19, 45–53 (2016).
Google Scholar
Anderson, T. R., Hessen, D. O., Boersma, M., Urabe, J. & Mayor, D. J. Will invertebrates require increasingly carbon-rich food in a warming world? Am. Naturalist 190, 725–742 (2017).
Kirchner, M., Sahling, G., Uhlig, G., Gunkel, W. & Klings, K.-W. Does the red tide-forming dinoflagellate Noctiluca scintillans feed on bacteria? Sarsia 81, 45–55 (2015).
Elbrächter, M. & Qi, Y. Aspects of Noctiluca (Dinophyceae) population dynamics. In Physiological Ecology of Harmful Algal Blooms (ed. Anderson, M. D.) 315–335 (Springer-Verlag, 1998).
Atienza, D., Saiz, E. & Calbet, A. Feeding ecology of the marine cladoceran Penilia avirostris: natural diet, prey selectivity and daily ration. Mar. Ecol. Prog. Ser. 315, 211–220 (2006).
Zhang, S., Liu, H., Chen, B. & Chih-Jung, W. Effects of diet nutritional quality on the growth and grazing of Noctiluca scintillans. Sci. Rep. 527, 73–85 (2015).
Google Scholar
Reid, P. C., Borges, M. F. & Svendsen, E. A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery. Fish. Res. 50, 163–171 (2001).
Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).
Google Scholar
Payne, M. R. et al. Recruitment in a changing environment: the 2000s North Sea herring recruitment failure. ICES J. Mar. Sci. 66, 272–277 (2009).
Perälä, T., Olsen, E. M. & Hutchings, J. A. Disentangling conditional effects of multiple regime shifts on Atlantic cod productivity. PLoS ONE 15, e0237414 (2020).
Google Scholar
Behrenfeld, M. J., Boss, E. S. & Halsey, K. H. Phytoplankton community structuring and succession in a competition-neutral resource landscape. ISME COMMUN. 1, 1–8 (2021).
Monteiro, F. M. et al. Why marine phytoplankton calcify. Sci. Adv. 2, 1–14 (2016).
Mayers, K. M. J. et al. The possession of coccoliths fails to deter microzooplankton grazers. Front. Mar. Sci. 7, 976 (2020).
Zhao, Y. et al. Grazing by microzooplankton and copepods on the microbial food web in spring in the southern Yellow Sea, China. Mar. Life Sci. Technol. 2, 442–455 (2020).
Aberle, N. et al. High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community. Biogeosciences 10, 1471–1481 (2013).
Horn, H. G. et al. Low CO2 sensitivity of Microzooplankton communities in the Gullmar Fjord, Skagerrak: evidence from a long-term Mesocosm Study. PLoS ONE 11, 1–24 (2016).
Chen, B., Landry, M. R., Huang, B. & Liu, H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. Oceanogr. 57, 519–526 (2012).
Google Scholar
Vázquez-Domínguez, E., Vaqué, D. & Gasol, J. M. Temperature effects on the heterotrophic bacteria, heterotrophic nanoflagellates, and microbial top predators of the NW Mediterranean. Aquat. Microb. Ecol. 67, 107–121 (2012).
Lara, E. et al. Experimental evaluation of the warming effect on viral, bacterial and protistan communities in two contrasting Arctic systems. Aquat. Microb. Ecol. 70, 17–32 (2013).
Olson, M. B., Solem, K. & Love, B. Microzooplankton grazing responds to simulated ocean acidification indirectly through changes in prey cellular characteristics. Mar. Ecol. Prog. Ser. 604, 83–97 (2018).
Google Scholar
Sherr, E. B. & Sherr, B. F. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28, 223–235 (1994).
Google Scholar
Brander, K. & Kiørboe, T. Decreasing phytoplankton size adversely affects ocean food chains. Glob. Change Biol. 26, 5356–5357 (2020).
Irigoien, X. et al. A high frequency time series at weathership M, Norwegian Sea, during the 1997 spring bloom: feeding of adult female Calanus finmarchicus. Mar. Ecol. Prog. Ser. 172, 127–137 (1998).
Fenchel, T. The microbial loop—25 years later. J. Exp. Mar. Biol. Ecol. 366, 99–103 (2008).
Aberle, N., Malzahn, A. M., Lewandowska, A. M. & Sommer, U. Some like it hot: the protozooplankton— copepod link in a warming ocean. Mar. Ecol. Prog. Ser. 519, 103–113 (2015).
Berglund, J., Müren, U., Båmstedt, U. & Andersson, A. Efficiency of a phytoplankton-based and a bacteria-based food web in a pelagic marine system. Limnol. Oceanogr. 52, 121–131 (2007).
Google Scholar
Sherr, E. B. & Sherr, B. F. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 352, 187–197 (2007).
Gifford, D. J. The protozoan-metazoan trophic link in pelagic ecosystems. J. Protozool. 38, 81–86 (1991).
Rollwagen-Bollens, G. & Gifford, S. The role of protistan microzooplankton in the upper San Francisco estuary planktonic food web: source or sink? Estuaries Coasts 34, 1026–1038 (2011).
Google Scholar
Anjusha, A. et al. Trophic efficiency of plankton food webs: observations from the Gulf of Mannar and the Palk Bay, Southeast Coast of India. J. Mar. Syst. 115, 40–61 (2013).
IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. In The Context of Strengthening the Global Response to The Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (Masson-Delmotte, V. et al (eds.) 616 (IPCC, Geneva, Switzerland, 2018).
Pansch, A., Winde, V., Asmus, R. & Asmus, H. Tidal benthic mesocosms simulating future climate change scenarios in the field of marine ecology. Limnol. Oceanogr.: Methods 14, 257–267 (2016).
van Leeuwen, S., Tett, P., Mills, D. & van der Molen, J. Stratified and nonstratified areas in the North Sea: long-term variability and biological and policy implications. J. Geophys. Res.: Oceans 120, 4670–4686 (2015).
Grasshoff, K., Kremling, K. & Ehrhardt, M. (eds). Methods of Seawater Analysis, 3rd edn. (Wiley-VCH, Weinheim, 1999).
Dickson, A. G. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res. 28, 609–623 (1981).
Google Scholar
Pierrot, D. E., Lewis, E. & Wallace, D. W. R. MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a (2006).
Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. 34, 1733–1743 (1987).
Google Scholar
Arrigo, K. R. et al. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283, 365–368 (1999).
Google Scholar
Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton- Methodik. Int. Ver. für. Theoretische und Angew. Limnologie: Mitteilungen 9, 1–38 (1958).
McEwen, G. F., Johnson, M. W. & Folsom, T. R. A statistical analysis of the performance of the Folsom plankton sample splitter, based upon test observations. Archiv für. Archiv Meteorologie, Geophysik und Bioklimatologie, Ser. A 7, 502–527 (1954).
Sell, D. W. & Evans, M. S. A statistical analysis of subsampling and an evaluation of the Folsom plankton splitter. Hydrobiologia 94, 223–230 (1982).
Boersma, M., Wiltshire, K. H., Kong, S., Greve, W. & Renz, J. Long-term change in the copepod community in the southern German Bight. J. Sea Res. 101, 41–50 (2015).
Marie, D., Simon, N. & Vaulot, D. Phytoplankton cell counting by flow cytometry. Algal Culturing Tech. 1, 253–267 (2005).
Hillebrand, H., Dürselen, C., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).
Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).
Google Scholar
Putt, M. & Stoecker, D. K. An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34, 1097–1103 (1989).
Beran, A. et al. Carbon content and biovolume of the heterotrophic dinoflagellate Noctiluca scintillans from the Northern Adriatic Sea. In Proceedings of the CESUM-BS 2003, Varna. 28 (Book of Abstracts, UNESCO, Paris, 2003).
Lee, S. & Fuhrman, J. A. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53, 1298–1303 (1987).
Google Scholar
Kraberg, A., Baumann, M. & Dürselen, C. Coastal Phytoplankton: Photo Guide for Northern European Seas (Dr. Friedrich Pfeil, München, 2010).
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).
Source: Ecology - nature.com