in

Oceanographic setting influences the prokaryotic community and metabolome in deep-sea sponges

  • Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Webster, N. S. et al. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. Microbiol. 12, 2070–2082 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sipkema, D. et al. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission: Microbial transmission in Petrosia ficiformis. Environ. Microbiol. 17, 3807–3821 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Cleary, D. F. R. et al. The sponge microbiome within the greater coral reef microbial metacommunity. Nat. Commun. 10, 1644 (2019).

  • Björk, J. R., Díez-Vives, C., Astudillo-García, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Webster, N. S. & Taylor, M. W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 14, 335–346 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Kennedy, J. et al. Evidence of a putative deep sea specific microbiome in marine sponges. PLoS ONE 9, e91092 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinert, G. et al. Compositional and quantitative insights into bacterial and archaeal communities of south pacific deep-sea sponges (Demospongiae and Hexactinellida). Front. Microbiol. 11, 716 (2020).

  • Busch, K. et al. On giant shoulders: How a seamount affects the microbial community composition of seawater and sponges. Biogeosciences 17, 3471–3486 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Olson, J. B. & Gao, X. Characterizing the bacterial associates of three Caribbean sponges along a gradient from shallow to mesophotic depths. FEMS Microbiol. Ecol. 85, 74–84 (2013).

    PubMed 

    Google Scholar 

  • Steinert, G. et al. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ 4, e1936 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Morrow, K. M., Fiore, C. L. & Lesser, M. P. Environmental drivers of microbial community shifts in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient. Environ. Microbiol. 18, 2025–2038 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Ebada, S. S. & Proksch, P. The chemistry of marine sponges. In Handbook of Marine Natural Products (eds Fattorusso, E. et al.) 191–293 (Springer, 2012). https://doi.org/10.1007/978-90-481-3834-0_4.

    Chapter 

    Google Scholar 

  • Kornprobst, J.-M. Porifera (Sponges). Encyclopedia of Marine Natural Products (Wiley, 2014).

    Google Scholar 

  • Leal, M. C., Puga, J., Serôdio, J., Gomes, N. C. M. & Calado, R. Trends in the discovery of new marine natural products from invertebrates over the last two decades—Where and what are we bioprospecting?. PLoS ONE 7, e30580 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G. & Prinsep, M. R. Marine natural products. Nat. Prod. Rep. 34, 235–294 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Unson, M. D., Holland, N. D. & Faulkner, D. J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119, 1–11 (1994).

    CAS 

    Google Scholar 

  • Bewley, C. A., Holland, N. D. & Faulkner, D. J. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52, 716–722 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tianero, M. D., Balaich, J. N. & Donia, M. S. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. Nat. Microbiol. 4, 1149–1159 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Ivanišević, J., Thomas, O. P., Lejeusne, C., Chevaldonné, P. & Pérez, T. Metabolic fingerprinting as an indicator of biodiversity: Towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics 7, 289–304 (2011).

    Google Scholar 

  • Pérez, T. et al. Oscarella balibaloi, a new sponge species (Homoscleromorpha: Plakinidae) from the Western Mediterranean Sea: Cytological description, reproductive cycle and ecology: O. balibaloi: Description, reproductive cycle and ecology. Mar. Ecol. (Berl.) 32, 174–187 (2011).

    ADS 

    Google Scholar 

  • Reveillaud, J. et al. Relevance of an integrative approach for taxonomic revision in sponge taxa: Case study of the shallow-water Atlanto-Mediterranean Hexadella species (Porifera: Ianthellidae: Verongida). Invertebr. Syst. 26, 230–248 (2012).

    Google Scholar 

  • Olsen, E. K. et al. Marine AChE inhibitors isolated from Geodia barretti: Natural compounds and their synthetic analogs. Org. Biomol. Chem. 14, 1629–1640 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Reverter, M., Perez, T., Ereskovsky, A. V. & Banaigs, B. Secondary metabolome variability and inducible chemical defenses in the Mediterranean Sponge Aplysina cavernicola. J. Chem. Ecol. 42, 60–70 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Reverter, M., Tribalat, M.-A., Pérez, T. & Thomas, O. P. Metabolome variability for two Mediterranean sponge species of the genus Haliclona: Specificity, time, and space. Metabolomics 14, 114 (2018).

  • Villegas-Plazas, M. et al. Variations in microbial diversity and metabolite profiles of the tropical marine sponge Xestospongia muta with season and depth. Microb. Ecol. 78, 243–256 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Mohanty, I. et al. Multi-omic profiling of Melophlus sponges reveals diverse metabolomic and microbiome architectures that are non-overlapping with ecological neighbors. Mar. Drugs 18, 124 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Bowerbank, J. S. On the anatomy and physiology of the Spongiadae. Part I. On the spicula. Philos. Trans. R. Soc. Lond. 148, 279–332 (1858).

    ADS 

    Google Scholar 

  • Vosmaer, G. C. J. The sponges of the ‘Willem Barents’ expedition 1880 and 1881. Bijdragen tot de Dierkunde 12, 1–47 (1885).

    Google Scholar 

  • Radax, R. et al. Metatranscriptomics of the marine sponge Geodia barretti: Tackling phylogeny and function of its microbial community. Environ. Microbiol. 14, 1308–1324 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Topsent, E. Spongiaires provenant des campagnes scientifiques de la ‘Princesse Alice’ dans les Mers du Nord (1898–1899—1906–1907). Résultats des campagnes scientifiques accomplies par le Prince Albert I. Monaco 45, 1–67 (1913).

    Google Scholar 

  • Yashayaev, I. & Loder, J. W. Further intensification of deep convection in the Labrador Sea in 2016. Geophys. Res. Lett. 44, 1429–1438 (2017).

    ADS 

    Google Scholar 

  • Gutleben, J. et al. Diversity of tryptophan halogenases in sponges of the genus Aplysina. FEMS Microbiol. Ecol. 95, fiz108 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Indraningrat, A. et al. Cultivation of sponge-associated bacteria from Agelas sventres and Xestospongia muta collected from different depths. Mar. Drugs 17, 578 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Ramiro-Garcia, J. et al. NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000 Res. 5, 1791 (2018).

    Google Scholar 

  • Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl. Acids Res. 42, D643–D648 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Erngren, I., Smit, E., Pettersson, C., Cárdenas, P. & Hedeland, M. The effects of sampling and storage conditions on the metabolite profile of the marine sponge Geodia barretti. Front. Chem. 9:662659 (2021)

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package (2017).

  • Dat, T. T. H., Steinert, G., Thi Kim Cuc, N., Smidt, H. & Sipkema, D. Archaeal and bacterial diversity and community composition from 18 phylogenetically divergent sponge species in Vietnam. PeerJ 6, e4970 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010). https://doi.org/10.1109/GCE.2010.5676129.

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucl. Acids Res. 47, W256–W259 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thévenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 14, 3322–3335 (2015).

    PubMed 

    Google Scholar 

  • Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, Y. et al. Molecular ecological network analyses. BMC Bioinform. 13, 113 (2012).

    Google Scholar 

  • Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durno, W. E., Hanson, N. W., Konwar, K. M. & Hallam, S. J. Expanding the boundaries of local similarity analysis. BMC Genom. 14, S3 (2013).

    Google Scholar 

  • Reshef, D. N. et al. Detecting novel associations in large data sets. Science 334, 1518–1524 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hall, M. M., Torres, D. J. & Yashayaev, I. Absolute velocity along the AR7W section in the Labrador Sea. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 72, 72–87 (2013).

    Google Scholar 

  • Reveillaud, J. et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 8, 1198–1209 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moitinho-Silva, L. et al. Predicting the HMA-LMA status in marine sponges by machine learning. Front. Microbiol. 8, 752 (2017).

  • Lidgren, G., Bohlin, L. & Bergman, J. Studies of Swedish marine organisms VII. A novel biologically active indole alkaloid from the sponge Geodia barretti. Tetrahedron Lett. 27, 3283–3284 (1986).

    CAS 

    Google Scholar 

  • Sjögren, M. et al. Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti. J. Nat. Prod. 67, 368–372 (2004).

    PubMed 

    Google Scholar 

  • Sölter, S. Identifizierung und Synthese von Naturstoffen aus Borealen Schwämmen (Universität Hamburg, 2004).

    Google Scholar 

  • Di, X. et al. 6-Bromoindole derivatives from the Icelandic marine sponge Geodia barretti: Isolation and anti-inflammatory activity. Mar. Drugs 16, 437 (2018).

    CAS 
    PubMed Central 

    Google Scholar 

  • Carstens, B. B. et al. Isolation, characterization, and synthesis of the barrettides: Disulfide-containing peptides from the marine sponge Geodia barretti. J. Nat. Prod. 78, 1886–1893 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Hedner, E. et al. Brominated cyclodipeptides from the marine sponge Geodia barretti as selective 5-HT ligands. J. Nat. Prod. 69, 1421–1424 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Hedner, E. et al. Antifouling activity of a dibrominated cyclopeptide from the marine sponge Geodia barretti. J. Nat. Prod. 71, 330–333 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Erwin, P. M., Pita, L., López-Legentil, S. & Turon, X. Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance. Appl. Environ. Microbiol. 78, 7358–7368 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cárdenas, C. A., Bell, J. J., Davy, S. K., Hoggard, M. & Taylor, M. W. Influence of environmental variation on symbiotic bacterial communities of two temperate sponges. FEMS Microbiol. Ecol. 88, 516–527 (2014).

    PubMed 

    Google Scholar 

  • Glasl, B., Smith, C. E., Bourne, D. G. & Webster, N. S. Exploring the diversity-stability paradigm using sponge microbial communities. Sci. Rep. 8, 8425 (2018).

  • Schöttner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, e55505 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lurgi, M., Thomas, T., Wemheuer, B., Webster, N. S. & Montoya, J. M. Modularity and predicted functions of the global sponge-microbiome network. Nat. Commun. 10, 992 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luter, H. M. et al. Microbiome analysis of a disease affecting the deep-sea sponge Geodia barretti. FEMS Microbiol. Ecol. 93, fix074 (2017).

  • Thistle, D. Ecosystems of the Deep Oceans (Elsevier, 2003).

    Google Scholar 

  • Pita, L., Erwin, P. M., Turon, X. & López-Legentil, S. Till death do us part: Stable sponge-bacteria associations under thermal and food shortage stresses. PLoS ONE 8, e80307 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Webster, N. S., Cobb, R. E. & Negri, A. P. Temperature thresholds for bacterial symbiosis with a sponge. ISME J. 2, 830–842 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Gerringer, M. E., Drazen, J. C. & Yancey, P. H. Metabolic enzyme activities of abyssal and hadal fishes: Pressure effects and a re-evaluation of depth-related changes. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 125, 135–146 (2017).

    CAS 

    Google Scholar 

  • Yashayaev, I. Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr. 73, 242–276 (2007).

    ADS 

    Google Scholar 

  • Rhein, M., Steinfeldt, R., Kieke, D., Stendardo, I. & Yashayaev, I. Ventilation variability of Labrador Sea Water and its impact on oxygen and anthropogenic carbon: A review. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160321 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galand, P. E., Potvin, M., Casamayor, E. O. & Lovejoy, C. Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J. 4, 564–576 (2010).

    PubMed 

    Google Scholar 

  • Frank, A. H., Garcia, J. A. L., Herndl, G. J. & Reinthaler, T. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water: North Atlantic dark ocean prokaryotic biogeography. Environ. Microbiol. 18, 2052–2063 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Agogué, H., Lamy, D., Neal, P. R., Sogin, M. L. & Herndl, G. J. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol. Ecol. 20, 258–274 (2011).

    PubMed 

    Google Scholar 

  • Djurhuus, A., Boersch-Supan, P. H., Mikalsen, S.-O. & Rogers, A. D. Microbe biogeography tracks water masses in a dynamic oceanic frontal system. R. Soc. Open Sci. 4, 170033 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, O. et al. Spatiotemporal dynamics of ammonia-oxidizing Thaumarchaeota in distinct Arctic water masses. Front. Microbiol. 9, 1–13 (2018).

    ADS 

    Google Scholar 

  • Kraemer, S., Ramachandran, A., Colatriano, D., Lovejoy, C. & Walsh, D. A. Diversity and biogeography of SAR11 bacteria from the Arctic Ocean. ISME J. https://doi.org/10.1038/s41396-019-0499-4 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monier, A. et al. Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates. Biogeosciences 10, 4273–4286 (2013).

    ADS 

    Google Scholar 

  • Monier, A. et al. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. 9, 990–1002 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Corrège, T. The relationship between water masses and benthic ostracod assemblages in the western Coral Sea, Southwest Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 245–266 (1993).

    Google Scholar 

  • Muhling, B. A., Beckley, L. E., Koslow, J. A. & Pearce, A. F. Larval fish assemblages and water mass structure off the oligotrophic south-western Australian coast: SW Australian larval fish assemblages. Fish. Oceanogr. 17, 16–31 (2007).

    Google Scholar 

  • Eerkes-Medrano, D. et al. A community assessment of the demersal fish and benthic invertebrates of the Rosemary Bank Seamount Marine Protected Area (NE Atlantic). Deep Sea Res. Part 1 Oceanogr. Res. Pap. https://doi.org/10.1016/j.dsr.2019.103180 (2019).

    Article 

    Google Scholar 

  • Puerta, P. et al. Influence of water masses on the biodiversity and biogeography of deep-sea benthic ecosystems in the North Atlantic. Front. Mar. Sci. 7, 239 (2020).

  • Roberts, E. et al. Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic Seas. Mar. Ecol. Prog. Ser. 659, 75–96 (2021).

    ADS 

    Google Scholar 

  • Kenchington, E. et al. Connectivity modelling of areas closed to protect vulnerable marine ecosystems in the northwest Atlantic. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 143, 85–103 (2019).

    Google Scholar 

  • Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).

    PubMed 

    Google Scholar 

  • McCauley, M., Chiarello, M., Atkinson, C. L. & Jackson, C. R. Gut microbiomes of freshwater mussels (Unionidae) are taxonomically and phylogenetically variable across years but remain functionally stable. Microorganisms 9, 411 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Page, M., West, L., Northcote, P., Battershill, C. & Kelly, M. Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand Sponge Mycale hentscheli. J. Chem. Ecol. 31, 1161–1174 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Ternon, E., Perino, E., Manconi, R., Pronzato, R. & Thomas, O. P. How environmental factors affect the production of guanidine alkaloids by the Mediterranean sponge Crambe crambe. Mar. Drugs 15, 181 (2017).

    PubMed Central 

    Google Scholar 

  • Sacristán-Soriano, O., Banaigs, B. & Becerro, M. A. Temporal trends in the secondary metabolite production of the sponge Aplysina aerophoba. Mar. Drugs 10, 677–693 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ivanisevic, J. et al. Biochemical trade-offs: Evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi. PLoS ONE 6, e28059 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burg, M. B. & Ferraris, J. D. Intracellular organic osmolytes: Function and regulation. J. Biol. Chem. 283, 7309–7313 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nau-Wagner, G., Boch, J., Le Good, J. A. & Bremer, E. High-affinity transport of choline-O-sulfate and its use as a compatible solute in Bacillus subtilis. Appl. Environ. Microbiol. 65, 560–568 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Popowich, A., Zhang, Q. & Le, X. C. Arsenobetaine: The ongoing mystery. Natl. Sci. Rev. 3, 451–458 (2016).

    CAS 

    Google Scholar 

  • Connor, K. M. & Gracey, A. Y. High-resolution analysis of metabolic cycles in the intertidal mussel Mytilus californianus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R103–R111 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Cárdenas, P. Who produces Ianthelline? The Arctic sponge Stryphnus fortis or its sponge Epibiont Hexadella dedritifera: A probable case of sponge–sponge contamination. J. Chem. Ecol. 42, 339–347 (2016).

    PubMed 

    Google Scholar 

  • Steffen, K. et al. Barrettides: A peptide family specifically produced by the deep-sea sponge Geodia barretti. J. Nat. Prod. 84, 3138–3146 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbamondi, G. R., De Rosa, S., Iodice, C. & Tommonaro, G. Cyclic dipeptides produced by marine sponge-associated bacteria as quorum sensing signals. Nat. Prod. Commun. 9, 229–232 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Kasheverov, I. et al. 6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor. Mar. Drugs 13, 1255–1266 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moitinho-Silva, L. et al. The sponge microbiome project. Gigascience 6, 1–7 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 7, 744 (2016).

  • Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Study reveals chemical link between wildfire smoke and ozone depletion

    Can the world meet global climate targets without coordinated global action?