in

Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod

  • Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

  • Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

    Google Scholar 

  • Campbell-Staton, S. C. et al. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357, 495–498 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363, 499–504 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Therkildsen, N. O. et al. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365, 487–490 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Brennan, R. S., Garrett, A. D., Huber, K. E., Hargarten, H. & Pespeni, M. H. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions. Proc. R. Soc. B: Biol. Sci. 286, 20190943 (2019).

    CAS 

    Google Scholar 

  • Stearns, S. C. The evolutionary significance of phenotypic plasticity. Bioscience 39, 436–445 (1989).

  • Thompson, J. D. Phenotypic plasticity as a component of evolutionary change. Trends Ecol. Evol. 6, 246–249 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180176 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chevin, L. M., Collins, S. & Lefèvre, F. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct. Ecol. https://doi.org/10.1111/j.1365-2435.2012.02043.x (2013).

  • Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).

    PubMed 

    Google Scholar 

  • Calosi, P., De Wit, P., Thor, P. & Dupont, S. Will life find a way? Evolution of marine species under global change. Evol. Appl. 9, 1035–1042 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).

    PubMed 

    Google Scholar 

  • Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Posavi, M., Gulisija, D., Munro, J. B., Silva, J. C. & Lee, C. E. Rapid evolution of genome-wide gene expression and plasticity during saline to freshwater invasions by the copepod Eurytemora affinis species complex. Mol. Ecol. 29, 4835–4856 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kelly, M. W., Pankey, M. S., DeBiasse, M. B. & Plachetzki, D. C. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. 31, 398–406 (2017).

    Google Scholar 

  • Sikkink, K. L., Reynolds, R. M., Ituarte, C. M., Cresko, W. A. & Phillips, P. C. Rapid evolution of phenotypic plasticity and shifting thresholds of genetic assimilation in the nematode Caenorhabditis remanei. G3 4, 1103–1112 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brennan, R. S., Galvez, F. & Whitehead, A. Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus. J. Exp. Biol. 218, 1212–1222 (2015).

    PubMed 

    Google Scholar 

  • Kelly, M. W., Pankey, M. S. & DeBiasse, M. B. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. https://doi.org/10.1111/1365-2435.12725 (2017).

  • Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7, 118–126 (1953).

    Google Scholar 

  • Schlötterer, C., Kofler, R., Versace, E., Tobler, R. & Franssen, S. U. Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity 114, 431–440 (2015).

    PubMed 

    Google Scholar 

  • Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).

    PubMed 

    Google Scholar 

  • Huang, Y. & Agrawal, A. F. Experimental evolution of gene expression and plasticity in alternative selective regimes. PLoS Genet. 12, e1006336 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mallard, F., Nolte, V. & Schlötterer, C. The evolution of phenotypic plasticity in response to temperature stress. Genome Biol. Evol. 12, 2429–2440 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaum, C. E. & Collins, S. Plasticity predicts evolution in a marine alga. Proc. Biol. Sci. 281, 20141486 (2014).

  • Kelly, S. A., Czech, P. P., Wight, J. T., Blank, K. M. & Garland, T. Jr Experimental evolution and phenotypic plasticity of hindlimb bones in high-activity house mice. J. Morphol. 267, 360–374 (2006).

    PubMed 

    Google Scholar 

  • Garland, T. Jr & Kelly, S. A. Phenotypic plasticity and experimental evolution. J. Exp. Biol. 209, 2344–2361 (2006).

    PubMed 

    Google Scholar 

  • Gibbin, E. M., Massamba N’Siala, G., Chakravarti, L. J., Jarrold, M. D. & Calosi, P. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCairns, R. J. S. & Bernatchez, L. Adaptive divergence between freshwater and marine sticklebacks: insights into the role of phenotypic plasticity from an integrated analysis of candidate gene expression. Evolution 64, 1029–1047 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Whitehead, A. The evolutionary radiation of diverse osmotolerant physiologies in killifish (Fundulus sp.). Evolution 64, 2070–2085 (2010).

    PubMed 

    Google Scholar 

  • Lind, M. I. & Johansson, F. The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria. J. Evol. Biol. 20, 1288–1297 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Lázaro-Nogal, A. et al. Environmental heterogeneity leads to higher plasticity in dry-edge populations of a semi-arid Chilean shrub: insights into climate change responses. J. Ecol. 103, 338–350 (2015).

    Google Scholar 

  • Gianoli, E. Plasticity of traits and correlations in two populations of Convolvulus arvensis (Convolvulaceae) differing in environmental heterogeneity. Int. J. Plant Sci. 165, 825–832 (2004).

    Google Scholar 

  • Fischer, E. K., Song, Y., Hughes, K. A., Zhou, W. & Hoke, K. L. Nonparallel transcriptional divergence during parallel adaptation. Mol. Ecol. 30, 1516–1530 (2021).

    PubMed 

    Google Scholar 

  • Gunter, H. M., Schneider, R. F., Karner, I., Sturmbauer, C. & Meyer, A. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol. Ecol. 26, 6634–6653 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Bitter, M. C. et al. Fluctuating selection and global change: a synthesis and review on disentangling the roles of climate amplitude, predictability and novelty. Proc. Biol. Sci. 288, 20210727 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Skliris, N. et al. Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Clim. Dyn. 43, 709–736 (2014).

    Google Scholar 

  • Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. in Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1029–1136 (Cambridge University Press, 2013).

  • Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).

    PubMed 

    Google Scholar 

  • Reusch, T. B. H. & Boyd, P. W. Experimental evolution meets marine phytoplankton. Evolution 67, 1849–1859 (2013).

    PubMed 

    Google Scholar 

  • Palumbi, S. R., Evans, T. G., Pespeni, M. H. & Somero, G. N. Present and future adaptation of marine species assemblages. Oceanography https://doi.org/10.5670/oceanog.2019.314 (2019).

  • Helmuth, B. et al. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Sci. Data 3, 160087 (2016).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive ‘acidified’ water onto the continental shelf. Science 320, 1490–1492 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).

    PubMed 

    Google Scholar 

  • Huys, R. & Boxshall, G. A. Copepod Evolution. (marinespecies.org, 1991).

  • Langer, J. A. F. et al. Acclimation and adaptation of the coastal calanoid copepod Acartia tonsa to ocean acidification: a long-term laboratory investigation. Mar. Ecol. Prog. Ser. 619, 35–51 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Ann. Rev. Mar. Sci. 5, 349–370 (2013).

    PubMed 

    Google Scholar 

  • De Wit, P., Dupont, S. & Thor, P. Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol. Appl. 9, 1112–1123 (2016).

    PubMed 

    Google Scholar 

  • Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Chang. Biol. 21, 2261–2271 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180186 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).

    PubMed 

    Google Scholar 

  • Mauchline, J. The Biology of Calanoid Copepods (Academic Press, 1998).

  • Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).

    PubMed 

    Google Scholar 

  • Gobler, C. J. & Baumann, H. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol. Lett. 12, 20150976 (2016).

  • Rice, E., Dam, H. G. & Stewart, G. Impact of climate change on estuarine zooplankton: surface water warming in Long Island Sound is associated with changes in copepod size and community structure. Estuaries Coasts 38, 13–23 (2015).

    Google Scholar 

  • IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 1454 (IPCC, 2014).

  • Caldeira, K. & Wickett, M. E. Oceanography: anthropogenic carbon and ocean pH. Nature 425, 365 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Chang. 11, 780–786 (2021).

    ADS 

    Google Scholar 

  • Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barghi, N., Hermisson, J. & Schlötterer, C. Polygenic adaptation: a unifying framework to understand positive selection. Nat. Rev. Genet. 21, 769–781 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Láruson, Á. J., Yeaman, S. & Lotterhos, K. E. The importance of genetic redundancy in evolution. Trends Ecol. Evol. 35, 809–822 (2020).

    PubMed 

    Google Scholar 

  • Tobler, R. et al. Massive habitat-specific genomic response in D. melanogaster populations during experimental evolution in hot and cold environments. Mol. Biol. Evol. 31, 364–375 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Belhadj Slimen, I. et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperth. 30, 513–523 (2014).

    CAS 

    Google Scholar 

  • Downs, C. A. & Heckathorn, S. A. The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett. 430, 246–250 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Harada, A. E., Healy, T. M. & Burton, R. S. Variation in thermal tolerance and its relationship to mitochondrial function across populations of Tigriopus californicus. Front. Physiol. 10, 213 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, D. J. & Schulte, P. M. Mitochondria and the thermal limits of ectotherms. J. Exp. Biol. 223 (2020).

  • Mathew, A. N. U. & Morimoto, R. I. Role of the heat-shock response in the life and death of proteins. Ann. N. Y. Acad. Sci. 851, 99–111 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Evans, T. G., Pespeni, M. H., Hofmann, G. E., Palumbi, S. R. & Sanford, E. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic. Mol. Ecol. 26, 2257–2275 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Bailey, A. et al. Regulation of gene expression is associated with tolerance of the Arctic copepod Calanus glacialis to CO2-acidified sea water. Ecol. Evol. 7, 7145–7160 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Anjum, R. & Blenis, J. The RSK family of kinases: emerging roles in cellular signalling. Nat. Rev. Mol. Cell Biol. 9, 747–758 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Marshall, D. J. Transgenerational plasticity in the sea: context-dependent maternal effects across the life history. Ecology 89, 418–427 (2008).

    PubMed 

    Google Scholar 

  • Vehmaa, A., Brutemark, A. & Engström-Öst, J. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes. PLoS ONE 7, e48538 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skinner, M. K. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol. 25, 2–6 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Chang. Biol. 25, 4147–4164 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • Sasaki, M. C. & Dam, H. G. Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short‐lived copepod. Ecol. Evol. 90, 193 (2020).

    Google Scholar 

  • Ho, W.-C., Li, D., Zhu, Q. & Zhang, J. Phenotypic plasticity as a long-term memory easing readaptations to ancestral environments. Sci. Adv. 6, eaba3388 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caswell, H. Matrix population models. Encyclopedia of Environmetrics 3, https://doi.org/10.1002/9781118445112.stat07481 (2006).

  • Huey, R. B., Wakefield, T., Crill, W. D. & Gilchrist, G. W. Within- and between-generation effects of temperature on early fecundity of Drosophila melanogaster. Heredity 74, 216–223 (1995). Pt 2.

    PubMed 

    Google Scholar 

  • Zwaan, B., Bijlsma, R. & Hoekstra, R. F. Direct selection on life span in Drosophila melanogaster. Evolution 49, 649–659 (1995).

    PubMed 

    Google Scholar 

  • Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359 (1990).

    ADS 

    Google Scholar 

  • Jerison, E. R., Nguyen Ba, A. N., Desai, M. M. & Kryazhimskiy, S. Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat. Ecol. Evol. 4, 601–611 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, S., Khodursky, A., Dykhuizen, D. E. & Dean, A. M. Evolutionary genomics of ecological specialization. Proc. Natl Acad. Sci. USA 101, 11719–11724 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacLean, R. C., Bell, G. & Rainey, P. B. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc. Natl Acad. Sci. USA 101, 8072–8077 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bettencourt, B. R., Feder, M. E. & Cavicchi, S. Experimental evolution of HSP70 expression and thermotolerance in Drosophila melanogaster. Evolution 53, 484–492 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Schaum, C.-E., Buckling, A., Smirnoff, N., Studholme, D. J. & Yvon-Durocher, G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat. Commun. 9, 1719 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orr, H. A. Adaptation and the cost of complexity. Evolution 54, 13–20 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, P. & Zhang, J. Antagonistic pleiotropy conceals molecular adaptations in changing environments. Nat. Ecol. Evol. 4, 461–469 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mayor, D. J., Sommer, U., Cook, K. B. & Viant, M. R. The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Sci. Rep. 5, 13690 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedersen, S. A. et al. Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates. Environ. Sci. Technol. 48, 12275–12284 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bono, L. M., Smith, L. B. Jr, Pfennig, D. W. & Burch, C. L. The emergence of performance trade-offs during local adaptation: insights from experimental evolution. Mol. Ecol. 26, 1720–1733 (2017).

    PubMed 

    Google Scholar 

  • Masel, J., King, O. D. & Maughan, H. The loss of adaptive plasticity during long periods of environmental stasis. Am. Nat. 169, 38–46 (2007).

    PubMed 

    Google Scholar 

  • Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bay, R. A. et al. Predicting responses to contemporary environmental change using evolutionary response architectures. Am. Nat. 189, 463–473 (2017).

    PubMed 

    Google Scholar 

  • Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).

    PubMed 

    Google Scholar 

  • Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    PubMed 

    Google Scholar 

  • Feinberg, L. R. & Dam, H. G. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 175, 87–96 (1998).

    ADS 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jørgensen, T. S. et al. The genome and mRNA transcriptome of the cosmopolitan calanoid copepod Acartia tonsa Dana improve the understanding of copepod genome size evolution. Genome Biol. Evol. https://doi.org/10.1093/gbe/evz067 (2019).

  • Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    CAS 

    Google Scholar 

  • Davidson, N. M., Hawkins, A. D. K. & Oshlack, A. SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes. Genome Biol. 18, 148 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2016).

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 14 (2016).

    PubMed 

    Google Scholar 

  • Campbell-Staton, S. C., Velotta, J. P. & Winchell, K. M. Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands. Nat. Commun. 12, 6195 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics https://doi.org/10.1093/bioinformatics/btr521 (2011).

  • Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  • Orozco-terWengel, P. et al. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Mol. Ecol. 21, 4931–4941 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kofler, R. et al. PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS ONE 6, e15925 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 16, 371 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2013).

  • Therneau, T. A Package for Survival Analysis in S. version 2.38. (Mayo Foundation, 2015).

  • Kassambara, A., Kosinski, M., Biecek, P. & Fabian, S. Package ‘survminer’. Drawing Survival Curves using ‘ggplot2’. (R package version 0. 3. 1.) (2017).

  • Houde, S. E. L. & Roman, M. R. Effects of food quality on the functional ingestion response of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 40, 69–77 (1987).

    ADS 

    Google Scholar 

  • Brennan, R. S. et al. Code repository for ‘Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod’. Zenodo https://doi.org/10.5281/zenodo.5840148 (2022).


  • Source: Ecology - nature.com

    Genotyping-in-Thousands by sequencing panel development and application for high-resolution monitoring of introgressive hybridization within sockeye salmon

    Seascapes of fear and competition shape regional seabird movement ecology