Geslin, B. et al. Massively introduced managed species and their consequences for plant–pollinator interactions. Adv. Ecol. Res. 57, 147–199 (2017).
Huryn, V. M. B. Ecological impacts of introduced honey bees. Q. R. Biol. 72, 275–297 (1997).
Stout, J. C. & Morales, C. L. Ecological impacts of invasive alien species on bees. Apidologie 40, 388–409 (2009).
Hung, K.-L.J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. Ser. B 285, 20172140 (2018).
Paini, D. R. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review. Austral Ecol. 29, 399–407 (2004).
Moritz, R. F. A., Hartel, S. & Neumann, P. Global invasions of the western honey bee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12, 289–301 (2005).
Paini, D. R. & Roberts, J. D. Commercial honey bees (Apis mellifera) reduce the fecundity of an Australian native bee (Hylaeus alcyoneus). Biol. Cons. 123, 103–112 (2005).
Munoz, I. & De la Rua, P. Wide genetic diversity in old world honey bees threatened by introgression. Apidologie 52, 200–217 (2021).
Williams, I. H. The dependences of crop production within the European Union on pollination by honey bees. Agric. Zool. Rev. 6, 229–257 (1994).
Thompson, C. E., Biesmeijer, J. C., Allnutt, T. R., Pietravalle, S. & Budge, G. E. Parasite pressures on feral honey bees (Apis mellifera sp.). PLoS One 9, e105164 (2014).
Google Scholar
Belsky, J. & Joshi, N. K. Impact of biotic and abiotic stressors on managed and feral bees. Insects 10, 233 (2019).
Google Scholar
Medina-Flores, C. A., Guzman-Novoa, E., Hamiduzzaman, M. M., Arechiga-Flores, C. F. & Lopez-Carlos, M. A. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico. Genet. Mol. Res. 13, 7282–7293 (2014).
Google Scholar
Portman, Z. M., Tepedino, V. J., Tripodi, A. D., Szalanski, A. L. & Durham, S. L. Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees. Biol. Invasions 20, 593–606 (2018).
Santos, G. M. D. et al. Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biol. Invasions 14, 2369–2378 (2012).
Chapman, R. E. & Bourke, A. F. G. The influence of sociality on the conservation biology of social insects. Ecol. Lett. 4, 650–662 (2001).
Aizen, M. A. et al. When mutualism goes bad: Density-dependent impacts of introduced bees on plant reproduction. New Phytol. 204, 322–324 (2014).
Breeze, T. D. et al. Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLoS One 9, e82996 (2014).
Google Scholar
Baum, K. A. et al. Spatial distribution of Africanized honey bees in an urban landscape. Landsc. Urban Plan. 100, 153–163 (2011).
Ratnieks, F. L. W., Piery, M. A. & Cuadriello, I. The natural nest and nest density of the africanized honey-bee (Hymenoptera, Apidae) near Tapachula, Chiapas, Mexico. Can. Entomol. 123, 353–359 (1991).
Baum, K. A., Rubink, W. L., Pinto, M. A. & Coulson, R. N. Spatial and temporal distribution and nest site characteristics of feral honey bee (Hymenoptera: Apidae) colonies in a coastal prairie landscape. Environ. Entomol. 33, 727–739 (2004).
Rangel, J. et al. Africanization of a feral honey bee (Apis mellifera) population in South Texas: Does a decade make a difference?. Ecol. Evol. 6, 2158–2169 (2016).
Google Scholar
Oldroyd, B. P., Thexton, E. G., Lawler, S. H. & Crozier, R. H. Population demography of Australian feral bees (Apis mellifera). Oecologia 111, 381–387 (1997).
Google Scholar
Arundel, J. et al. Remarkable uniformity in the densities of feral honey bee Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) colonies in South Eastern Australia. Austral Entomol. 53, 328–336 (2014).
Remm, J. & Lõhmus, A. Tree cavities in forests—The broad distribution pattern of a keystone structure for biodiversity. For. Ecol. Manag. 262, 579–585 (2006).
Lindenmayer, D., Crane, M., Blanchard, W., Okada, S. & Montague-Drake, R. Do nest boxes in restored woodlands promote the conservation of hollow-dependent fauna?. Restor. Ecol. 24, 244–251 (2016).
New South Wales Department of Planning, Industry and Environment 2003. https://www.environment.nsw.gov.au/topics/animals-and-plants/threatened-species/nsw-threatened-species-scientific-committee/determinations/final-determinations/2000-2003/competition-from-feral-honeybees-key-threatening-process-listing (accessed 22 Feb 2021).
Goldingay, R. L., Rohweder, D. & Taylor, B. D. Nest box contentions: Are nest boxes used by the species they target?. Ecol. Manag. Restor. 21, 115–122 (2020).
Lindenmayer, D. B. et al. Are nest boxes a viable alternative source of cavities for hollow-dependent animals? Long-term monitoring of nest box occupancy, pest use and attrition. Biol. Cons. 142, 33–42 (2009).
Lindenmayer, D. B. et al. The anatomy of a failed offset. Biol. Conserv. 210, 286–292 (2017).
Macak, P. V. Nest boxes for wildlife in Victoria: An overview of nest box distribution and use. Vic. Nat. 137, 4–14 (2020).
Le Roux, D. S. et al. Effects of entrance size, tree size and landscape context on nest box occupancy: Considerations for management and biodiversity offsets. For. Ecol. Manag. 366, 135–142 (2016).
Berris, K. K. & Barth, M. PVC nest boxes are less at risk of occupancy by feral honey bees than timber nest boxes and natural hollows. Ecol. Manag. Restor. 21, 155–157 (2020).
Jaffe, R. et al. Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv. Biol. 24, 583–593 (2010).
Google Scholar
Utaipanon, P., Schaerf, T. M. & Oldroyd, B. P. Assessing the density of honey bee colonies at ecosystem scales. Ecol. Entomol. 44, 291–304 (2019).
Utaipanon, P., Holmes, M. J., Chapman, N. C. & Oldroyd, B. P. Estimating the density of honey bee (Apis mellifera) colonies using trapped drones: Area sampled and drone mating flight distance. Apidologie 50, 578–592 (2019).
Google Scholar
Williamson, E. M. Reliability of honey bee hive density estimates using drone sampling: does relative hive size or distance affect a colony’s drone contribution? Honours Thesis, The University of Adelaide (2020).
Benson, J. S. The effect of 200 years of European settlement on the vegetation and flora of New South Wales. Cunninghamia 2, 343–370 (1991).
New South Wales Office of Environment and Heritage 2015. Upgraded NSW woody vegetation extent for 2011. http://data.auscover.org.au/xwiki/bin/view/Product+pages/nsw+5m+woody+extent+and+fpc (accessed 13 May 2020).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). www.R-project.org (accessed 12 January 2021).
Burnham, K. P. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
Google Scholar
Albert, A. & Anderson, J. A. On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71, 1–10 (1984).
Google Scholar
Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38 (1993).
Google Scholar
Kosmidis, I., Pagui, E. C. K. & Sartori, N. Mean and median bias reduction in generalized linear models. Stat. Comput. 30, 43–59 (2020).
Google Scholar
Anderson, D. R. Model Based Inference in the Life Sciences: A Primer on Evidence (Springer Science & Business Media, 2007).
Barton, K. MuMIn: Multi-model inference. R package version 1.43.17 (2016).
Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R package version 3.4-5 (2020).
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.3.0 (2018).
Kosmidis, I. brglm2: Bias Reduction in Generalized Linear Models. R package version 0.6.2 (2020).
Kosmidis, I., Schumacher, D. detectseparation: Detect and Check for Separation and Infinite Maximum Likelihood Estimates. R package version 0.1 (2020).
Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).
Pateiro-Lopez, B., Rodriguez-Casal, A. Alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane. R package version 2.2 (2019).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
Google Scholar
Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).
Wickham, H. Forcats: Tools for working with categorical variables (factors). R package version 0.5.0 (2018).
Wickham, H., François, R., Henry, L., Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.0 (2021).
Birtchnell, M. J. & Gibson, M. Long-term flowering patterns of melliferous Eucalyptus (Myrtaceae) species. Aust. J. Bot. 54, 745–754 (2006).
Steinhauer, N. et al. Drivers of colony losses. Curr. Opin. Insect Sci. 26, 142–148 (2018).
Google Scholar
Cunningham, S. A., Heard, T. & FitzGibbon, F. The future of pollinators for Australian Agriculture. Aust. J. Agric. Res. 53, 893–900 (2002).
Hinson, E. M., Duncan, M., Lim, J., Arundel, J. & Oldroyd, B. P. The density of feral honey bee (Apis mellifera) colonies in South East Australia is greater in undisturbed than in disturbed habitats. Apidologie 46, 403–413 (2015).
McIntyre, S. Ecological and anthropomorphic factors permitting low-risk assisted colonization in temperate grassy woodlands. Biol. Conserv. 144, 1781–1789 (2011).
Steffan-Dewenter, I. & Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. R. Soc. B Biol. Sci. 270, 569–575 (2003).
Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. U.S.A. 116, 909–914 (2019).
Google Scholar
Arthur, A. D., Li, J., Henry, S. & Cunningham, S. A. Influence of woody vegetation on pollinator densities in oilseed Brassica fields in an Australian temperate landscape. Basic Appl. Ecol. 11, 406–414 (2010).
Lindenmayer, D. B. et al. New policies for old trees: Averting a global crisis in a keystone ecological structure. Conserv. Lett. 7, 61–69 (2014).
Crane, M. J., Lindenmayer, D. B. & Cunningham, R. B. The value of countryside elements in the conservation of a threatened arboreal marsupial Petaurus norfolcensis in agricultural landscapes of south-eastern Australia—the disproportional value of scattered trees. PLoS One 9, e107178 (2014).
Google Scholar
Gibbons, P., Lindenmayer, D. B., Barry, S. C. & Tanton, M. T. Hollow selection by vertebrate fauna in forests of southeastern Australia and implications for forest management. Biol. Conserv. 103, 1–12 (2002).
Seeley, T. D. & Morse, R. A. The nest of the honey bee (Apis mellifera L.). Insectes Soc. 23, 495–512 (1976).
Hung, K. L. J., Ascher, J. S., Davids, J. A. & Holway, D. A. Ecological filtering in scrub fragments restructures the taxonomic and functional composition of native bee assemblages. Ecology 100, e02654 (2019).
Google Scholar
Cockle, K. L., Martin, K. & Drever, M. C. Supply of tree-holes limits nest density of cavity-nesting birds in primary and logged subtropical Atlantic forest. Biol. Conserv. 143, 2851–2857 (2010).
Heard, T. Stingless bees. In Australian Native Bees: A Practical Hand Book 106–139 (NSW Department of Primary Industries, 2016).
Geoscience Australia 2006. GEODATA TOPO 250K. Commonwealth of Australia. http://pid.geoscience.gov.au/dataset/ga/63999 (accessed 11 December 2020).
Source: Ecology - nature.com