in

Field trials reveal the complexities of deploying and evaluating the impacts of yeast-baited ovitraps on Aedes mosquito densities in Trinidad, West Indies

  • Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–509 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Weaver, S. C., Charlier, C., Nasilakis, N. & Lecuit, M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69, 1–14 (2018).

    Google Scholar 

  • Wilder-Smith, A. et al. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect. Dis. 17, e101–e106 (2017).

    PubMed 

    Google Scholar 

  • Felicetti, T., Manfroni, G., Cecchetti, V. & Cannalire, R. Broad-spectrum flavivirus inhibitors: a medicinal chemistry point of view. Chem. Med. Chem. 15, 2391–2419 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • da Silveira, L. T. C., Bernardo, T. & Santos, M. Systemic review of dengue vaccine efficacy. BMC Inf. Dis. 19, 750 (2019).

    Google Scholar 

  • Katzelnich, L. C. et al. Zika virus infection enhances future risk of severe dengue disease. Science 369, 1123–1128 (2020).

    ADS 

    Google Scholar 

  • Rezza, G. & Weaver, S. C. Chikungunya as a paradigm for emerging viral diseases: evaluating disease impact and hurdles to vaccine development. PLoS Negl. Trop. Dis. 13, e0006919 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Reiter, P. & Gubler, D. J. Surveillance and control of urban dengue vectors. In Dengue and dengue hemorrhagic fever (eds Gubler, D. J. & Kuno, G.) 425–462 (CAB International, 1997).

    Google Scholar 

  • Moyes, C. L. et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Trop. Dis. 11, e0005625 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowman, L. R., Donegan, S. & McCall, P. J. Is dengue vector control deficient in effectiveness or evidence?: systematic review and meta-analysis. PLoS Negl. Trop. Dis. 10, e0004551 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Erlanger, T. E., Keiser, J. & Utzinger, J. Effect of dengue vector control interventions on entomological parameters in developing countries: a systematic review and meta-analysis. Med. Vet. Entomol. 22, 203–221 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Banerjee, S., Aditya, G. & Saha, G. K. Household disposables as breeding habitats of dengue vectors: linking wastes and public health. Waste Manag. 33, 233–239 (2013).

    PubMed 

    Google Scholar 

  • Chadee, D. D., Doon, R. & Severson, D. W. Surveillance of dengue fever cases using a novel Aedes aegypti population sampling method in Trinidad, West Indies: the cardinal points approach. Acta Trop. 104, 1–7 (2007).

    PubMed 

    Google Scholar 

  • Barrera, R., Acevedo, V. & Amador, M. Role of abandoned and vacant houses on Aedes aegypti productivity. J. Med. Entomol. 104, 145–150 (2020).

    Google Scholar 

  • Chadee, D. D. & Rahaman, A. Use of water drums by humans and Aedes aegypti in Trinidad. J. Vector Ecol. 25, 28–35 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Padmanabha, H., Soto, E., Mosquera, M., Lord, C. C. & Lounibos, L. P. Ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates. EcoHealth 7, 78–90 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Colton, Y. M., Chadee, D. D. & Severson, D. W. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med. Vet. Entomol. 17, 195–204 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Davis, T. J., Kaufman, P. E., Hogsette, J. A. & Kline, D. I. The effects of larval habitat quality on Aedes albopictus skip oviposition. J. Am. Mosq. Control Assoc. 31, 321–328 (2015).

    PubMed 

    Google Scholar 

  • David, M. R., Lourenco-de-Oliveira, R. & de Freitas, R. M. Container productivity, daily survival rates and dispersal of Aedes aegypti mosquitoes in a high income dengue epidemic neighbourhood of Rio de Janeiro: presumed influence of differential urban structure on mosquito biology. Mem. Inst. Oswaldo Cruz 104, 927–932 (2009).

    PubMed 

    Google Scholar 

  • Focks, D. A. & Chadee, D. D. Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am. J. Trop. Med. Hyg. 56, 159–167 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Morrison, A. C. et al. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J. Med. Entomol. 41, 1123–1142 (2004).

    PubMed 

    Google Scholar 

  • Chadee, D. D. Oviposition strategies adopted by gravid Aedes aegypti (L.) (Diptera: Culicidae) as detected by ovitraps in Trinidad, West Indies (2002–2006). Acta Trop. 111, 279–283 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Chadee, D. D. Seasonal incidence and horizontal distribution patterns of oviposition by Aedes aegypti in an urban environment in Trinidad, West Indies. J. Am. Mosq. Control Asso. 8, 281–284 (1992).

    CAS 

    Google Scholar 

  • Fay, R. W. & Eliason, D. A. A preferred oviposition site as a surveillance method for Aedes aegypti. Mosq. News 26, 531–535 (1966).

    Google Scholar 

  • Johnson, B. J., Ritchie, S. A. & Fonseca, D. M. The state of the art of lethal oviposition trap-based mass interventions for arboviral control. Insects 8, 5 (2017).

    PubMed Central 

    Google Scholar 

  • Eiras, A. E., Buhagiar, T. S. & Ritchie, S. A. Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera: Culicidae). J. Med. Entomol. 51, 200–209 (2014).

    PubMed 

    Google Scholar 

  • Mackay, A. J., Amador, M. & Barrera, R. An improvied autocidal gravid ovitrap for the control and surveillance of Aedes aegypti. Parasit. Vectors 6, 225 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olson, K. E. & Blair, C. D. Arbovirus-mosquito interactions: RNAi pathway. Curr. Opin. Virol. 15, 119–126 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hapairai, L. K. et al. Lure-and-kill yeast interfering RNA larvicides targeting neural genes in the human disease vector mosquito Aedes aegypti. Sci. Rep. 7, 13223 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mysore, K. et al. Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality. Malaria J. 16, 461 (2017).

    Google Scholar 

  • Mysore, K. et al. Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes. Parasit. Vectors 12, 256 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mysore, K. et al. Characterization of a yeast interfering RNA larvicide with a target site conserved in the synaptotagmin gene of multiple disease vector mosquitoes. PLoS Negl. Trop. Dis 13, e0007422 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hapairai, L. K. et al. Evaluation of large volume yeast interfering RNA lure-and-kill ovitraps for attraction and control of Aedes mosquitoes. Med. Vet. Entomol. 35, 361–370 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).

    Google Scholar 

  • Braks, M. A. H., Honorio, N. A., Lourenco-de-Oliveira, R., Juliano, S. A. & Lounibos, L. P. Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. J. Med. Entomol. 40, 785–794 (2003).

    PubMed 

    Google Scholar 

  • Kumari, R., Kumar, K. & Chauhan, L. S. First dengue virus detection in Aedes albopictus from Delhi, India: Its breeding ecology and role in dengue transmission. Trop. Med. Int. Health 16, 949–954 (2012).

    Google Scholar 

  • Apostol, B. L., Black, W. C. IV., Reiter, P. & Miller, B. R. Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. Am. J. Trop. Med. Hyg. 51, 89–97 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Corbet, P. S. & Chadee, D. D. An improved method for detecting substrate preferences shown by mosquitoes that exhibit ‘skip oviposition’. Physiol. Entomol. 18, 114–118 (1993).

    Google Scholar 

  • Reinbold-Wasson, D. D. & Reiskind, M. H. Comparative skip-oviposition behavior among container breeding Aedes spp. mosquitoes (Diptera: Culicidae). J. Med. Entomol. https://doi.org/10.1093/jme/tjab084 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Barrera, R. Spatial stability of adult Aedes aegypti populations. Am. J. Trop. Med. Hyg. 85, 1087–1092 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Barrera, R., Amador, M., Ruiz-Valcarcel, J. & Acevedo, V. Factors modulating captures of gravid Aedes aegypti females. J. Am. Mosq. Control Assoc. 36, 66–73 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moura, M. B. C. M. et al. Spatio-temporal dynamics of Aedes aegypti and Aedes albopictus oviposition in an urban area of northeastern Brazil. Trop. Med. Int. Health 25, 1510–1521 (2020).

    PubMed 

    Google Scholar 

  • Crawford, J. E. et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 38, 482–492 (2020).

    CAS 

    Google Scholar 

  • Lau, K. W. et al. Vertical distribution of Aedes mosquitoes in multiple story buildings in Selangor and Kuala Lumpur, Malaysia. Trop. Biomed. 30, 36–45 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Perich, M. J. et al. Field evaluation of a lethal ovitrap against dengue vectors in Brazil. Med. Vet. Entomol. 17, 205–210 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Serpa, L. L. N. et al. Study of the the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus according to the habitat and meteorlogical variables, municipality of Sao Sebastiao, Sao Paulo state, Brazil. Parasit. Vectors 6, 321 (2014).

    Google Scholar 

  • Sithiprasasna, R. et al. Field evaluation of a lethal ovitrap for the control of Aedes aegypti (Diptera: Culicidae) in Thailand. J. Med. Entomol. 40, 455–462 (2003).

    PubMed 

    Google Scholar 

  • Barrera, R., Amador, M., Munoz, J. & Acevedo, V. Integrated vector control of Aedes aegypti mosquitoes around target houses. Parasit. Vectors 11, 88 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Naranjo, D. P. et al. Vector control programs in Saint Johns County, Florida and Guayas, Ecuador: Successes and barriers to integrated vector management. BMC Public Health 14, 674 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Regis, L. N. et al. Sustained reduction of the dengue vector population resulting from an integrated control strategy applied in two Brazilian cities. PLoS ONE 8, e67682 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stewart, A. T. M. et al. Community acceptance of yeast interfering RNA larvicide technology for control of Aedes mosquitoes in Trinidad. PLoS ONE 15, e0237675 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winter, N. et al. Assessment of Trinidad community stakeholder perspectives on the use of yeast interfering RNA-baited ovitraps for biorational control of Aedes mosquitoes. PLoS ONE 16, e0252997 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chadee, D. D. & Corbet, P. S. Seasonal incidence and diel patterns of oviposition in the field of the mosquito, Aedes aegypti (L.) (Diptera: Culicidae) in Trinidad, West Indies: a preliminary study. Ann. Trop. Med. Parasitol. 81, 151–161 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Edman, J. D. et al. Aedes aegypti (Diptera: Culicdae) movement influenced by availability of oviposition sites. J. Med. Entomol. 35, 578–583 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Reiter, P., Amador, M. A., Anderson, R. A. & Clark, G. G. Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am. J. Trop. Med. Hyg. 52, 177–179 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Mysore, K. et al. Preparation and use of a yeast shRNA delivery system for gene silencing in mosquito larvae. Methods Mol. Biol. 1858, 213–231 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chadee, D. D., Fat, F. H. & Persad, R. C. First record of Aedes albopictus from Trinidad, West Indies. J. Am. Mosq. Control Assoc. 19, 438–439 (2003).

    PubMed 

    Google Scholar 

  • Clemons, A., Mori, A., Haugan, M., Severson, D. W. & Duman-Scheel, M. Culturing and egg collection of Aedes aegypti. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5507 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stan Developmental Team. Stan Modeling Language Users Guide and Reference Manual, v.2.22.1 https://mc-stan.org (2020).


  • Source: Ecology - nature.com

    MIT Center for Real Estate launches the Asia Real Estate Initiative

    Toward batteries that pack twice as much energy per pound