Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–509 (2013).
Google Scholar
Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).
Google Scholar
Weaver, S. C., Charlier, C., Nasilakis, N. & Lecuit, M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69, 1–14 (2018).
Wilder-Smith, A. et al. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect. Dis. 17, e101–e106 (2017).
Google Scholar
Felicetti, T., Manfroni, G., Cecchetti, V. & Cannalire, R. Broad-spectrum flavivirus inhibitors: a medicinal chemistry point of view. Chem. Med. Chem. 15, 2391–2419 (2020).
Google Scholar
da Silveira, L. T. C., Bernardo, T. & Santos, M. Systemic review of dengue vaccine efficacy. BMC Inf. Dis. 19, 750 (2019).
Katzelnich, L. C. et al. Zika virus infection enhances future risk of severe dengue disease. Science 369, 1123–1128 (2020).
Google Scholar
Rezza, G. & Weaver, S. C. Chikungunya as a paradigm for emerging viral diseases: evaluating disease impact and hurdles to vaccine development. PLoS Negl. Trop. Dis. 13, e0006919 (2019).
Google Scholar
Reiter, P. & Gubler, D. J. Surveillance and control of urban dengue vectors. In Dengue and dengue hemorrhagic fever (eds Gubler, D. J. & Kuno, G.) 425–462 (CAB International, 1997).
Moyes, C. L. et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Trop. Dis. 11, e0005625 (2017).
Google Scholar
Bowman, L. R., Donegan, S. & McCall, P. J. Is dengue vector control deficient in effectiveness or evidence?: systematic review and meta-analysis. PLoS Negl. Trop. Dis. 10, e0004551 (2016).
Google Scholar
Erlanger, T. E., Keiser, J. & Utzinger, J. Effect of dengue vector control interventions on entomological parameters in developing countries: a systematic review and meta-analysis. Med. Vet. Entomol. 22, 203–221 (2008).
Google Scholar
Banerjee, S., Aditya, G. & Saha, G. K. Household disposables as breeding habitats of dengue vectors: linking wastes and public health. Waste Manag. 33, 233–239 (2013).
Google Scholar
Chadee, D. D., Doon, R. & Severson, D. W. Surveillance of dengue fever cases using a novel Aedes aegypti population sampling method in Trinidad, West Indies: the cardinal points approach. Acta Trop. 104, 1–7 (2007).
Google Scholar
Barrera, R., Acevedo, V. & Amador, M. Role of abandoned and vacant houses on Aedes aegypti productivity. J. Med. Entomol. 104, 145–150 (2020).
Chadee, D. D. & Rahaman, A. Use of water drums by humans and Aedes aegypti in Trinidad. J. Vector Ecol. 25, 28–35 (2000).
Google Scholar
Padmanabha, H., Soto, E., Mosquera, M., Lord, C. C. & Lounibos, L. P. Ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates. EcoHealth 7, 78–90 (2010).
Google Scholar
Colton, Y. M., Chadee, D. D. & Severson, D. W. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med. Vet. Entomol. 17, 195–204 (2003).
Google Scholar
Davis, T. J., Kaufman, P. E., Hogsette, J. A. & Kline, D. I. The effects of larval habitat quality on Aedes albopictus skip oviposition. J. Am. Mosq. Control Assoc. 31, 321–328 (2015).
Google Scholar
David, M. R., Lourenco-de-Oliveira, R. & de Freitas, R. M. Container productivity, daily survival rates and dispersal of Aedes aegypti mosquitoes in a high income dengue epidemic neighbourhood of Rio de Janeiro: presumed influence of differential urban structure on mosquito biology. Mem. Inst. Oswaldo Cruz 104, 927–932 (2009).
Google Scholar
Focks, D. A. & Chadee, D. D. Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am. J. Trop. Med. Hyg. 56, 159–167 (1997).
Google Scholar
Morrison, A. C. et al. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J. Med. Entomol. 41, 1123–1142 (2004).
Google Scholar
Chadee, D. D. Oviposition strategies adopted by gravid Aedes aegypti (L.) (Diptera: Culicidae) as detected by ovitraps in Trinidad, West Indies (2002–2006). Acta Trop. 111, 279–283 (2009).
Google Scholar
Chadee, D. D. Seasonal incidence and horizontal distribution patterns of oviposition by Aedes aegypti in an urban environment in Trinidad, West Indies. J. Am. Mosq. Control Asso. 8, 281–284 (1992).
Google Scholar
Fay, R. W. & Eliason, D. A. A preferred oviposition site as a surveillance method for Aedes aegypti. Mosq. News 26, 531–535 (1966).
Johnson, B. J., Ritchie, S. A. & Fonseca, D. M. The state of the art of lethal oviposition trap-based mass interventions for arboviral control. Insects 8, 5 (2017).
Google Scholar
Eiras, A. E., Buhagiar, T. S. & Ritchie, S. A. Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera: Culicidae). J. Med. Entomol. 51, 200–209 (2014).
Google Scholar
Mackay, A. J., Amador, M. & Barrera, R. An improvied autocidal gravid ovitrap for the control and surveillance of Aedes aegypti. Parasit. Vectors 6, 225 (2013).
Google Scholar
Olson, K. E. & Blair, C. D. Arbovirus-mosquito interactions: RNAi pathway. Curr. Opin. Virol. 15, 119–126 (2015).
Google Scholar
Hapairai, L. K. et al. Lure-and-kill yeast interfering RNA larvicides targeting neural genes in the human disease vector mosquito Aedes aegypti. Sci. Rep. 7, 13223 (2017).
Google Scholar
Mysore, K. et al. Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality. Malaria J. 16, 461 (2017).
Mysore, K. et al. Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes. Parasit. Vectors 12, 256 (2019).
Google Scholar
Mysore, K. et al. Characterization of a yeast interfering RNA larvicide with a target site conserved in the synaptotagmin gene of multiple disease vector mosquitoes. PLoS Negl. Trop. Dis 13, e0007422 (2019).
Google Scholar
Hapairai, L. K. et al. Evaluation of large volume yeast interfering RNA lure-and-kill ovitraps for attraction and control of Aedes mosquitoes. Med. Vet. Entomol. 35, 361–370 (2021).
Google Scholar
Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
Braks, M. A. H., Honorio, N. A., Lourenco-de-Oliveira, R., Juliano, S. A. & Lounibos, L. P. Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. J. Med. Entomol. 40, 785–794 (2003).
Google Scholar
Kumari, R., Kumar, K. & Chauhan, L. S. First dengue virus detection in Aedes albopictus from Delhi, India: Its breeding ecology and role in dengue transmission. Trop. Med. Int. Health 16, 949–954 (2012).
Apostol, B. L., Black, W. C. IV., Reiter, P. & Miller, B. R. Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. Am. J. Trop. Med. Hyg. 51, 89–97 (1994).
Google Scholar
Corbet, P. S. & Chadee, D. D. An improved method for detecting substrate preferences shown by mosquitoes that exhibit ‘skip oviposition’. Physiol. Entomol. 18, 114–118 (1993).
Reinbold-Wasson, D. D. & Reiskind, M. H. Comparative skip-oviposition behavior among container breeding Aedes spp. mosquitoes (Diptera: Culicidae). J. Med. Entomol. https://doi.org/10.1093/jme/tjab084 (2021).
Google Scholar
Barrera, R. Spatial stability of adult Aedes aegypti populations. Am. J. Trop. Med. Hyg. 85, 1087–1092 (2011).
Google Scholar
Barrera, R., Amador, M., Ruiz-Valcarcel, J. & Acevedo, V. Factors modulating captures of gravid Aedes aegypti females. J. Am. Mosq. Control Assoc. 36, 66–73 (2020).
Google Scholar
Moura, M. B. C. M. et al. Spatio-temporal dynamics of Aedes aegypti and Aedes albopictus oviposition in an urban area of northeastern Brazil. Trop. Med. Int. Health 25, 1510–1521 (2020).
Google Scholar
Crawford, J. E. et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 38, 482–492 (2020).
Google Scholar
Lau, K. W. et al. Vertical distribution of Aedes mosquitoes in multiple story buildings in Selangor and Kuala Lumpur, Malaysia. Trop. Biomed. 30, 36–45 (2013).
Google Scholar
Perich, M. J. et al. Field evaluation of a lethal ovitrap against dengue vectors in Brazil. Med. Vet. Entomol. 17, 205–210 (2003).
Google Scholar
Serpa, L. L. N. et al. Study of the the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus according to the habitat and meteorlogical variables, municipality of Sao Sebastiao, Sao Paulo state, Brazil. Parasit. Vectors 6, 321 (2014).
Sithiprasasna, R. et al. Field evaluation of a lethal ovitrap for the control of Aedes aegypti (Diptera: Culicidae) in Thailand. J. Med. Entomol. 40, 455–462 (2003).
Google Scholar
Barrera, R., Amador, M., Munoz, J. & Acevedo, V. Integrated vector control of Aedes aegypti mosquitoes around target houses. Parasit. Vectors 11, 88 (2018).
Google Scholar
Naranjo, D. P. et al. Vector control programs in Saint Johns County, Florida and Guayas, Ecuador: Successes and barriers to integrated vector management. BMC Public Health 14, 674 (2014).
Google Scholar
Regis, L. N. et al. Sustained reduction of the dengue vector population resulting from an integrated control strategy applied in two Brazilian cities. PLoS ONE 8, e67682 (2013).
Google Scholar
Stewart, A. T. M. et al. Community acceptance of yeast interfering RNA larvicide technology for control of Aedes mosquitoes in Trinidad. PLoS ONE 15, e0237675 (2020).
Google Scholar
Winter, N. et al. Assessment of Trinidad community stakeholder perspectives on the use of yeast interfering RNA-baited ovitraps for biorational control of Aedes mosquitoes. PLoS ONE 16, e0252997 (2021).
Google Scholar
Chadee, D. D. & Corbet, P. S. Seasonal incidence and diel patterns of oviposition in the field of the mosquito, Aedes aegypti (L.) (Diptera: Culicidae) in Trinidad, West Indies: a preliminary study. Ann. Trop. Med. Parasitol. 81, 151–161 (1987).
Google Scholar
Edman, J. D. et al. Aedes aegypti (Diptera: Culicdae) movement influenced by availability of oviposition sites. J. Med. Entomol. 35, 578–583 (1998).
Google Scholar
Reiter, P., Amador, M. A., Anderson, R. A. & Clark, G. G. Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am. J. Trop. Med. Hyg. 52, 177–179 (1995).
Google Scholar
Mysore, K. et al. Preparation and use of a yeast shRNA delivery system for gene silencing in mosquito larvae. Methods Mol. Biol. 1858, 213–231 (2019).
Google Scholar
Chadee, D. D., Fat, F. H. & Persad, R. C. First record of Aedes albopictus from Trinidad, West Indies. J. Am. Mosq. Control Assoc. 19, 438–439 (2003).
Google Scholar
Clemons, A., Mori, A., Haugan, M., Severson, D. W. & Duman-Scheel, M. Culturing and egg collection of Aedes aegypti. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5507 (2010).
Google Scholar
Stan Developmental Team. Stan Modeling Language Users Guide and Reference Manual, v.2.22.1 https://mc-stan.org (2020).
Source: Ecology - nature.com