in

Divergence time estimation using ddRAD data and an isolation-with-migration model applied to water vole populations of Arvicola

  • Hey, J. On the arbitrary identification of real species. In Speciation and Patterns of Diversity (eds Butlin, R. K. et al.) 15–28 (Cambridge University Press, 2009).

    Google Scholar 

  • Arbogast, B. S., Edwards, S. V., Wakeley, J., Beerli, P. & Slowinski, J. B. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu. Rev. Ecol. Syst. 33, 707–740 (2002).

    Google Scholar 

  • Nielsen, R. & Wakeley, J. Distinguishing migration from isolation: A Markov chain Monte Carlo approach. Genetics 158, 885–896 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wakeley, J. The effects of subdivision on the genetic divergence of populations and species. Evolution 54, 1092–1101 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Hey, J. & Nielsen, R. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167, 747–760 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hey, J. Isolation with migration models for more than two populations. Mol. Biol. Evol. 27, 905–920 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Mailund, T. et al. A new isolation with migration model along complete genomes infers very different divergence processes among closely related great ape species. PLoS Genet. 8, e1003125 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Igea, J., Aymerich, P., Bannikova, A. A., Gosálbez, J. & Castresana, J. Multilocus species trees and species delimitation in a temporal context: Application to the water shrews of the genus Neomys. BMC Evol. Biol. 15, 209 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sánchez-Gracia, A. & Castresana, J. Impact of deep coalescence on the reliability of species tree inference from different types of DNA markers in mammals. PLoS One 7, e30239 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009).

    PubMed 

    Google Scholar 

  • Edwards, S. V. & Beerli, P. Perspective: Gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54, 1839–1854 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7, e37135 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Escoda, L., Fernández-González, A. & Castresana, J. Quantitative analysis of connectivity in populations of a semi-aquatic mammal using kinship categories and network assortativity. Mol. Ecol. Resour. 19, 310–326 (2019).

    PubMed 

    Google Scholar 

  • Bininda-Emonds, O. R. P. Fast genes and slow clades: Comparative rates of molecular evolution in mammals. Evol. Bioinform. 3, 59 (2007).

    CAS 

    Google Scholar 

  • Welch, J. J., Bininda-Emonds, O. R. P. & Bromham, L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol. Biol. 8, 53 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Matassi, G., Sharp, P. M. & Gautier, C. Chromosomal location effects on gene sequence evolution in mammals. Curr. Biol. 9, 786–791 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Lercher, M. J., Chamary, J. V. & Hurst, L. D. Genomic regionality in rates of evolution is not explained by clustering of genes of comparable expression profile. Genome Res. 14, 1002–1013 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castresana, J. Genes on human chromosome 19 show extreme divergence from the mouse orthologs and a high GC content. Nucleic Acids Res. 30, 1751–1756 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benton, M. J., Donoghue, P. C. J. & Asher, R. J. Calibrating and constraining molecular clocks. In The Timetree of Life (eds Hedges, S. B. & Kumar, S.) 35–86 (Oxford University Press, 2009).

  • Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Musser, G. G. & Carleton, M. D. Superfamily Muroidea. In Mammal Species of the World. A Taxonomic and Geographic Reference (eds Wilson, D. E. & Reeder, D. M.) 894–1531 (Johns Hopkins University Press, 2005).

  • Pardiñas, U. F. J. et al. Family Cricetidae (True Hamsters, Voles, Lemmings and New World Rats and Mice). In Handbook of the Mammals of the World. Volume 7. Rodents II (eds Wilson, D. E. et al.) 204-279 (Lynx Edicions, 2017).

  • Chevret, P. et al. Genetic structure, ecological versatility, and skull shape differentiation in Arvicola water voles (Rodentia, Cricetidae). J. Zoolog. Syst. Evol. Res. 58, 1323–1334 (2020).

    Google Scholar 

  • Kryštufek, B. et al. Fossorial morphotype does not make a species in water voles. Mammalia 79, 293–303 (2015).

    Google Scholar 

  • Centeno-Cuadros, A., Delibes, M. & Godoy, J. A. Dating the divergence between Southern and European water voles using molecular coalescent-based methods. J. Zool. 279, 404–409 (2009).

    Google Scholar 

  • Castiglia, R. et al. The Italian peninsula hosts a divergent mtDNA lineage of the water vole, Arvicola amphibius s.l., including fossorial and aquatic ecotypes. Hystrix 27, 99–103 (2016).

    Google Scholar 

  • Mahmoudi, A. et al. Evolutionary history of water voles revisited: Confronting a new phylogenetic model from molecular data with the fossil record. Mammalia 84, 171–184 (2020).

    Google Scholar 

  • Cassola, F. Arvicola scherman, Montane Water Vole. The IUCN Red List of Threatened Species e.T136766A115519839 (2016).

  • Somoano, A., Miñarro, M. & Ventura, J. Reproductive potential of a vole pest (Arvicola scherman) in Spanish apple orchards. Spanish J. Agric. Res. 14, e1008 (2016).

    Google Scholar 

  • Somoano, A., Ventura, J. & Miñarro, M. Continuous breeding of fossorial water voles in northwestern Spain: Potential impact on apple orchards. Folia Zool. 66, 37–49 (2017).

    Google Scholar 

  • Ventura, J. & Gosálbez, J. Taxonomic review of Arvicola terrestris (Linnaeus, 1758) (Rodentia, Arvicolidae) in the Iberian Peninsula. Bonn Zool. Beitr. 40, 227–242 (1989).

    Google Scholar 

  • Ventura, J. & Sans-Fuentes, M. A. Geographic variation and divergence in nonmetric cranial traits of Arvicola (Mammalia, Rodentia) in southwestern Europe. Z. Säugetierkunde 62, 99–107 (1997).

    Google Scholar 

  • Gómez, A. & Lunt, D. H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia (eds S. Weiss & N. Ferrand) 155–188 (Springer, 2007).

  • Batsaikhan, N. et al. Arvicola amphibius, European Water Vole. The IUCN Red List of Threatened Species e.T2149A197271401 (2016).

  • Cuenca-Bescós, G., Agustí, J., Lira, J., Rubio, M. M. & Rofes, J. A new species of water vole from the early Pleistocene of Southern Europe. Acta Palaeontol. Pol. 55, 565–580 (2010).

    Google Scholar 

  • Cubo, J., Ventura, J. & Casinos, A. A heterochronic interpretation of the origin of digging adaptations in the northern water vole, Arvicola terrestris (Rodentia: Arvicolidae). Biol. J. Linn. Soc. 87, 381–391 (2006).

    Google Scholar 

  • Catchen, J. M., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).

    CAS 

    Google Scholar 

  • Aghová, T. et al. Fossils know it best: Using a new set of fossil calibrations to improve the temporal phylogenetic framework of murid rodents (Rodentia: Muridae). Mol. Phylogenet. Evol. 128, 98–111 (2018).

    PubMed 

    Google Scholar 

  • Hey, J. et al. Phylogeny estimation by integration over isolation with migration models. Mol. Biol. Evol. 35, 2805–2818 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phifer-Rixey, M., Harr, B. & Hey, J. Further resolution of the house mouse (Mus musculus) phylogeny by integration over isolation-with-migration histories. BMC Evol. Biol. 20, 120 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hey, J. The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analyses. Mol. Biol. Evol. 27, 921–933 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. U.S.A. 99, 803–808 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uchimura, A. et al. Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. Genome Res. 25, 1125–1134 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Milholland, B. et al. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 8, 15183 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wright, B. R. et al. A demonstration of conservation genomics for threatened species management. Mol. Ecol. Resour. 20, 1526–1541 (2020).

    PubMed 

    Google Scholar 

  • Escoda, L. & Castresana, J. The genome of the Pyrenean desman and the effects of bottlenecks and inbreeding on the genomic landscape of an endangered species. Evol. Appl. 14, 1898–1913 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnold, B., Corbett-Detig, R. B., Hartl, D. & Bomblies, K. RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol. Ecol. 22, 3179–3190 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Cariou, M., Duret, L. & Charlat, S. How and how much does RAD-seq bias genetic diversity estimates?. BMC Evol. Biol. 16, 240 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell, C. R. et al. Pedigree-based and phylogenetic methods support surprising patterns of mutation rate and spectrum in the gray mouse lemur. Heredity 127, 233–244 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Scornavacca, C. et al. Orthomam v10: Scaling-up orthologous coding sequence and exon alignments with more than one hundred mammalian genomes. Mol. Biol. Evol. 36, 861–862 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willis, S. C., Hollenbeck, C. M., Puritz, J. B., Gold, J. R. & Portnoy, D. S. Haplotyping RAD loci: An efficient method to filter paralogs and account for physical linkage. Mol. Ecol. Resour. 17, 955–965 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • O’Leary, S. J., Puritz, J. B., Willis, S. C., Hollenbeck, C. M. & Portnoy, D. S. These aren’t the loci you’e looking for: Principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 27, 3193–3206 (2018).

    Google Scholar 

  • Dahl-Jensen, D. et al. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinho, C. & Hey, J. Divergence with gene flow: Models and data. Annu. Rev. Ecol. Evol. Syst. 41, 215–230 (2010).

    Google Scholar 

  • Balmori-de la Puente, A. et al. Size increase without genetic divergence in the Eurasian water shrew Neomys fodiens. Sci. Rep. 9, 17375 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 10, e1004016 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Felsenstein, J. PHYLIP-phylogeny inference package (version 3.4). Cladistics 5, 164–166 (1989).

    Google Scholar 

  • Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, R. P. & Yang, Z. Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evol. Biol. 11, 271 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hey, J. & Wang, K. The effect of undetected recombination on genealogy sampling and inference under an isolation-with-migration model. Mol. Ecol. Resour. 18, 489 (2019).

    Google Scholar 

  • QGIS_Development_Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2021).

  • IUCN. Arvicola scherman. The IUCN Red List of Threatened Species. Version 6.2. https://www.iucnredlist.org. Downloaded on 04 September 2019. (2019).

  • IUCN. Arvicola amphibius. The IUCN Red List of Threatened Species. Version 6.2. https://www.iucnredlist.org. Downloaded on 10 July 2019. (2019).


  • Source: Ecology - nature.com

    MIT Center for Real Estate launches the Asia Real Estate Initiative

    Toward batteries that pack twice as much energy per pound