in

Contrasting Early Ordovician assembly patterns highlight the complex initial stages of the Ordovician Radiation

  • Marshall, C. R. Explaining the Cambrian “explosion” of animals. Annu. Rev. Earth Planet. Sci. 34, 355–384 (2016).

    ADS 

    Google Scholar 

  • Bush, A. M. & Bambach, R. K. Paleoecologic megatrends in marine metazoa. Annu. Rev. Earth Planet. Sci. 39, 241–269 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Smith, M. P. & Harper, D. A. Causes of the Cambrian explosion. Science 341(6152), 1355–1356 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Daley, A. C., Antcliffe, J. B., Drage, H. B. & Pates, S. Early fossil record of Euarthropoda and the Cambrian explosion. Proc. Natl. Acad. Sci. 115(21), 5323–5331 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, D. et al. The Qingjiang biota—A Burgess Shale–type fossil Lagerstätte from the early Cambrian of South China. Science 363(6433), 1338–1342 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nanglu, K., Caron, J. B. & Gaines, R. R. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology 46(1), 58–81 (2020).

    Google Scholar 

  • Sepkoski, J. J. Jr. The Ordovician radiations: Diversification and extinction shown by global genus-level taxonomic data. In Ordovician Odyssey: Short Papers, 7th International Symposium on the Ordovician System (eds Cooper, J. D. et al.) 393–396 (Pacific Section Society for Sedimentary Geology (SEPM), 1995).

    Google Scholar 

  • Servais, T., Cascales-Miñana, B. & Harper, D. A. The Great Ordovician Biodiversification event (GOBE) is not a single event. Paleontol. Res. 25(4), 315–328 (2021).

    Google Scholar 

  • Harper, D. A., Cascales-Miñana, B., Kroeck, D. M. & Servais, T. The palaeogeographical impact on the biodiversity of marine faunas during the Ordovician radiations. Glob. Planet. Change 207, 103665 (2021).

    Google Scholar 

  • Harper, D. A. et al. The Furongian (late Cambrian) biodiversity gap: Real or apparent?. Palaeoworld 28(1–2), 4–12 (2019).

    Google Scholar 

  • Saleh, F. et al. Taphonomic bias in exceptionally preserved biotas. Earth Planet. Sci. Lett. 529, 115873 (2020).

    CAS 

    Google Scholar 

  • Saleh, F. et al. A novel tool to untangle the ecology and fossil preservation knot in exceptionally preserved biotas. Earth Planet. Sci. Lett. 569, 117061 (2021).

    CAS 

    Google Scholar 

  • Vizcaïno, D. & Lefebvre, B. Les échinodermes du Paléozoïqueinférieur de Montagne Noire: Biostratigraphie et paléodiversité. Geobios 32(2), 353–364 (1995).

    Google Scholar 

  • Vizcaïno, D. & Álvaro, J. J. Adequacy of the Early Ordovician trilobite record in the southern Montagne Noire (France): Biases for biodiversity documentation. Earth Environ. Sci. Trans. R. Soc. Edinb. 93(4), 393–401 (2002).

    Google Scholar 

  • Lefebvre, B. et al. Palaeoecological aspects of the diversification of echinoderms in the Lower Ordovician of central Anti-Atlas, Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 460, 97–121 (2016).

    Google Scholar 

  • Lefebvre, B. et al. Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. Geobios 52, 27–36 (2019).

    Google Scholar 

  • Martin, E. L. O. et al. Biostratigraphic and palaeoenvironmental controls on the trilobite associations from the Lower Ordovician Fezouata Shale of the central Anti-Atlas, Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 460, 142–154 (2016).

    Google Scholar 

  • Waisfeld, B. G. & Balseiro, D. Decoupling of local and regional dominance in trilobite assemblages from northwestern Argentina: New insights into Cambro-Ordovician ecological changes. Lethaia 49(3), 379–392 (2016).

    Google Scholar 

  • Serra, F., Balseiro, D. & Waisfeld, B. G. Diversity patterns in upper Cambrian to Lower Ordovician trilobite communities of north-western Argentina. Palaeontology 62(4), 677–695 (2019).

    Google Scholar 

  • Serra, F., Balseiro, D., Vaucher, R. & Waisfeld, B. G. Structure of trilobite communities along a delta-marine gradient (lower Ordovician; Northwestern Argentina). Palaios 36(2), 39–52 (2021).

    ADS 

    Google Scholar 

  • Saleh, F., Lefebvre, B., Hunter, A. W. & Nohejlová, M. Fossil weathering and preparation mimic soft tissues in eocrinoid and somasteroid echinoderms from the Lower Ordovician of Morocco. Microsc. Today 28(1), 24–28 (2020).

    Google Scholar 

  • Saleh, F. et al. Insights into soft-part preservation from the Early Ordovician Fezouata Biota. Earth Sci. Rev. 213, 103464 (2021).

    Google Scholar 

  • Saleh, F. et al. Large trilobites in a stress-free Early Ordovician environment. Geol. Mag. 158(2), 261–270 (2021).

    ADS 

    Google Scholar 

  • Vilmi, A. et al. Dispersal–niche continuum index: A new quantitative metric for assessing the relative importance of dispersal versus niche processes in community assembly. Ecography 44(3), 370–379 (2021).

    Google Scholar 

  • Hubbell, S. P. A Unified Theory of Biodiversity and Biogeography (Princeton University Press, 2001).

    Google Scholar 

  • Gravel, D., Canham, C. D., Beaudet, M. & Messier, C. Reconciling niche and neutrality: The continuum hypothesis. Ecol. Lett. 9(4), 399–409 (2006).

    PubMed 

    Google Scholar 

  • Bergström, S. M., Chen, X., Gutiérrez-Marco, J. C. & Dronov, A. The new chronostratigraphic classification of the Ordovician system and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia 42, 97–107 (2009).

    Google Scholar 

  • Lefebvre, B. et al. Age calibration of the Lower Ordovician Fezouata Lagerstätte, Morocco. Lethaia 51(2), 296–311 (2018).

    Google Scholar 

  • Servais, T. et al. The onset of the ‘Ordovician Plankton Revolution’in the late Cambrian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 458, 12–28 (2016).

    Google Scholar 

  • Lee, J. H. & Riding, R. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs. Earth Sci. Rev. 181, 98–121 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Servais, T., Danelian, T., Harper, D. A. T. & Munnecke, A. Possible oceanic circulation patterns, surface water currents and upwelling zones in the Early Palaeozoic. GFF 136(1), 229–233 (2014).

    Google Scholar 

  • Rasmussen, C. M. et al. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Sci. Rep. 6(1), 1–9 (2016).

    Google Scholar 

  • Edwards, C. T. Links between early Paleozoic oxygenation and the Great Ordovician Biodiversification Event (GOBE): A review. Palaeoworld 28(1–2), 37–50 (2019).

    Google Scholar 

  • Buatois, L. A. et al. Quantifying ecospace utilization and ecosystem engineering during the early Phanerozoic—The role of bioturbation and bioerosion. Sci. Adv. 6(33), eabb0618 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mángano, M. G. et al. Were all trilobites fully marine? Trilobite expansion into brackish water during the early Palaeozoic. Proc. R. Soc. B 288(1944), 20202263 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, T. Y. S. et al. Ontogeny of the Furongian (late Cambrian) trilobite Proceratopyge cf. P. Lata Whitehouse from northern Victoria Land, Antarctica, and the evolution of metamorphosis in trilobites. Palaeontology 59(5), 657–670 (2016).

    Google Scholar 

  • Laibl, L. & Fatka, O. Review of early developmental stages of trilobites and agnostids from the Barrandian area (Czech Republic). J. Natl. Mus. (Prague) Nat. Hist. Ser. 186(1), 103–112 (2017).

    Google Scholar 

  • Laibl, L., Cederström, P. & Ahlberg, P. Early post-embryonic development in Ellipsostrenua (Trilobita, Cambrian, Sweden) and the developmental patterns in Ellipsocephaloidea. J. Paleontol. 92(6), 1018–1027 (2018).

    Google Scholar 

  • Laibl, L., Maletz, J. & Olschewski, P. Post-embryonic development of Fritzolenellus suggests the ancestral morphology of the early developmental stages in Trilobita. Pap. Palaeontol. 7(2), 839–859 (2021).

    Google Scholar 

  • Chatterton, B. D. E. & Speyer, S. E. Ontogeny in Treatise on Invertebrate Paleontology. Part O, Arthropoda 1, Trilobita 1, revised. 7–11 (Geological Society of America and University of Kansas Press, Lawrence, 1997).

  • Bignon, A., Waisfeld, B. G., Vaccari, N. E. & Chatterton, B. D. Reassessment of the order Trinucleida (Trilobita). J. Syst. Palaeontol. 18(13), 1061–1077 (2020).

    Google Scholar 

  • Torsvik, T. H. & Cocks, L. R. M. The Palaeozoic palaeogeography of central Gondwana. Geol. Soc. Lond. Spec. Publ. 357(1), 137–166 (2011).

    ADS 

    Google Scholar 

  • Torsvik, T. H. & Cocks, L. R. M. New global palaeogeographical reconstructions for the early Palaeozoic and their generation. Geol. Soc. Lond. Mem. 38(1), 5–24 (2013).

    Google Scholar 

  • Bahlburg, H., Moya, M. C. & Zeil, W. Geodynamic evolution of the early Palaeozoic continental margin of Gondwana in the Southern Central Andes of Northwestern Argentina and Northern Chile. In Tectonics of the Southern Central Andes. 293–302 (Springer, 1994).

  • McEdward, L. R. & Miner, B. G. Larval and life-cycle patterns in echinoderms. Can. J. Zool. 79(7), 1125–1170 (2001).

    Google Scholar 

  • Lefebvre, B. et al. Palaeobiogeography of Ordovician echinoderms. Geol. Soc. Lond. Mem. 38(1), 173–198 (2013).

    Google Scholar 

  • Signor, P. W. & Vermeij, G. J. The plankton and the benthos: Origins and early history of an evolving relationship. Paleobiology 20, 297–319 (1994).

    Google Scholar 

  • Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: A general theory of invasibility. J. Ecol. 88(3), 528–534 (2000).

    Google Scholar 

  • Franeck, F. Perspectives on the Great Ordovician Biodiversification Event-local to global patterns (2020).

  • Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132(5), 652–661 (1988).

    Google Scholar 

  • Kröger, B., Franeck, F. & Rasmussen, C. M. The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation. Proc. R. Soc. B 286(1909), 20191634 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Penny, A. & Kröger, B. Impacts of spatial and environmental differentiation on early Palaeozoic marine biodiversity. Nat. Ecol. Evol. 3(12), 1655–1660 (2019).

    PubMed 

    Google Scholar 

  • Rasmussen, C. M., Kröger, B., Nielsen, M. L. & Colmenar, J. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proc. Natl. Acad. Sci. 116(15), 7207–7213 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stigall, A. L. The invasion hierarchy: Ecological and evolutionary consequences of invasions in the fossil record. Annu. Rev. Ecol. Evol. Syst. 50, 355–380 (2019).

    Google Scholar 

  • Stigall, A. L., Edwards, C. T., Freeman, R. L. & Rasmussen, C. M. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 530, 249–270 (2019).

    Google Scholar 

  • Stigall, A. L. How is biodiversity produced? Examining speciation processes during the GOBE. Lethaia 51(2), 165–172 (2018).

    Google Scholar 

  • Servais, T. & Harper, D. A. T. The great Ordovician biodiversification event (GOBE): Definition, concept and duration. Lethaia 51(2), 151–164 (2018).

    Google Scholar 

  • Trotter, J. A. et al. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321(5888), 550–554 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Vizcaïno, D., Álvaro, J. J. & Lefebvre, B. The lower Ordovician of the southern Montagne Noire. Ann. Soc. Géol. Nord 8(4), 213–220 (2001).

    Google Scholar 

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 7(12), 1451–1456 (2016).

    Google Scholar 

  • Suchéras-Marx, B., Escarguel, G., Ferreira, J. & Hammer, Ø. Statistical confidence intervals for relative abundances and abundance-based ratios: Simple practical solutions for an old overlooked question. Mar. Micropaleontol. 151, 101751 (2019).

    ADS 

    Google Scholar 

  • Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST-palaeontological statistics, ver. 1.89. Palaeontol. Electron 4(1), 1–9 (2001).

    Google Scholar 

  • Gibert, C. & Escarguel, G. PER-SIMPER—A new tool for inferring community assembly processes from taxon occurrences. Glob. Ecol. Biogeogr. 28(3), 374–385 (2019).

    Google Scholar 

  • Gibert, C. DNCImper: Assembly Process Identification Based on SIMPER Analysis. R package ver. 0.0.1.0000. https://github.com/Corentin-Gibert-Paleontology/DNCImper (2019).


  • Source: Ecology - nature.com

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Using nature’s structures in wooden buildings