Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).
Google Scholar
Schulze, E. Ueber einige stickstoffhaltige Bestandtheile der Keimlinge von Vicia sativa. Z. Phys. Chem. 17, 193–216 (1893).
Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).
Google Scholar
Kato, T., Yamagata, M. & Tsukahara, S. Guanidine compounds in fruit trees and their seasonal variations in citrus (Citrus unshiu Marc.). J. Jpn. Soc. Hortic. Sci. 55, 169–173 (1986).
Google Scholar
Gund, P. Guanidine, trimethylenemethane, and “Y-delocalization.” Can acyclic compounds have “aromatic” stability? J. Chem. Educ. 49, 100 (1972).
Google Scholar
Güthner, T., Mertschenk, B. & Schulz, B. In Ullmann’s Fine Chemicals vol. 2, 657–672 (Wiley-VCH, 2014).
Strecker, A. Untersuchungen über die chemischen Beziehungen zwischen Guanin, Xanthin, Theobromin, Caffeïn und Kreatinin. Justus Liebigs Ann. Chem. 118, 151–177 (1861).
Iwanoff, N. N. & Awetissowa, A. N. The fermentative conversion of guanidine in urea. Biochem. Z. 231, 67–78 (1931).
Lenkeit, F., Eckert, I., Hartig, J. S. & Weinberg, Z. Discovery and characterization of a fourth class of guanidine riboswitches. Nucleic Acids Res. 48, 12889–12899 (2020).
Google Scholar
Salvail, H., Balaji, A., Yu, D., Roth, A. & Breaker, R. R. Biochemical validation of a fourth guanidine riboswitch class in bacteria. Biochemistry 59, 4654–4662 (2020).
Google Scholar
Nelson, J. W., Atilho, R. M., Sherlock, M. E., Stockbridge, R. B. & Breaker, R. R. Metabolism of free guanidine in bacteria is regulated by a widespread riboswitch class. Mol. Cell 65, 220–230 (2017).
Google Scholar
Sherlock, M. E. & Breaker, R. R. Biochemical validation of a third guanidine riboswitch class in bacteria. Biochemistry 56, 359–363 (2016).
Sherlock, M. E., Malkowski, S. N. & Breaker, R. R. Biochemical validation of a second guanidine riboswitch class in bacteria. Biochemistry 56, 352–358 (2016).
Kermani, A. A., Macdonald, C. B., Gundepudi, R. & Stockbridge, R. B. Guanidinium export is the primal function of SMR family transporters. Proc. Natl Acad. Sci. USA 115, 3060–3065 (2018).
Google Scholar
Sinn, M., Hauth, F., Lenkeit, F., Weinberg, Z. & Hartig, J. S. Widespread bacterial utilization of guanidine as nitrogen source. Mol. Microbiol. 116, 200–210 (2021).
Google Scholar
Schneider, N. O. et al. Solving the conundrum: widespread proteins annotated for urea metabolism in bacteria are carboxyguanidine deiminases mediating nitrogen assimilation from guanidine. Biochemistry 59, 3258–3270 (2020).
Google Scholar
Zhao, J., Zhu, L., Fan, C., Wu, Y. & Xiang, S. Structure and function of urea amidolyase. Biosci. Rep. 38, BSR20171617 (2018).
Google Scholar
Mobley, H. L., Island, M. D. & Hausinger, R. P. Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480 (1995).
Google Scholar
Mazzei, L., Musiani, F. & Ciurli, S. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. J. Biol. Inorg. Chem. 25, 829–845 (2020).
Google Scholar
Uribe, E. et al. Functional analysis of the Mn2+ requirement in the catalysis of ureohydrolases arginase and agmatinase – a historical perspective. J. Inorg. Biochem. 202, 110812 (2020).
Google Scholar
Perozich, J., Hempel, J. & Morris, S. M. Jr Roles of conserved residues in the arginase family. Biochim. Biophys. Acta 1382, 23–37 (1998).
Google Scholar
Sekowska, A., Danchin, A. & Risler, J. L. Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology 146, 1815–1828 (2000).
Google Scholar
Sekula, B. The neighboring subunit is engaged to stabilize the substrate in the active site of plant arginases. Front. Plant Sci. 11, 987 (2020).
Google Scholar
Quintero, M. J., Muro-Pastor, A. M., Herrero, A. & Flores, E. Arginine catabolism in the cyanobacterium Synechocystis sp. strain PCC 6803 involves the urea cycle and arginase pathway. J. Bacteriol. 182, 1008–1015 (2000).
Google Scholar
Lacasse, M. J., Summers, K. L., Khorasani-Motlagh, M., George, G. N. & Zamble, D. B. Bimodal nickel-binding site on Escherichia coli [NiFe]-hydrogenase metallochaperone HypA. Inorg. Chem. 58, 13604–13618 (2019).
Google Scholar
Hoffmann, D., Gutekunst, K., Klissenbauer, M., Schulz-Friedrich, R. & Appel, J. Mutagenesis of hydrogenase accessory genes of Synechocystis sp. PCC 6803. FEBS J. 273, 4516–4527 (2006).
Google Scholar
Dowling, D. P., Di Costanzo, L., Gennadios, H. A. & Christianson, D. W. Evolution of the arginase fold and functional diversity. Cell. Mol. Life Sci. 65, 2039–2055 (2008).
Google Scholar
Dutta, A., Mazumder, M., Alam, M., Gourinath, S. & Sau, A. K. Metal-induced change in catalytic loop positioning in Helicobacter pylori arginase alters catalytic function. Biochem. J. 476, 3595–3614 (2019).
Google Scholar
Di Costanzo, L. et al. Crystal structure of human arginase I at 1.29-Å resolution and exploration of inhibition in the immune response. Proc. Natl Acad. Sci. USA 102, 13058–13063 (2005).
Google Scholar
Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2014).
Google Scholar
Alfano, M. & Cavazza, C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci. 29, 1071–1089 (2020).
Google Scholar
Wang, B. et al. A guanidine-degrading enzyme controls genomic stability of ethylene-producing cyanobacteria. Nat. Commun. 12, 5150 (2021).
Google Scholar
McGee, D. J. et al. Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily. Eur. J. Biochem. 271, 1952–1962 (2004).
Google Scholar
Arakawa, N., Igarashi, M., Kazuoka, T., Oikawa, T. & Soda, K. d-Arginase of Arthrobacter sp. KUJ 8602: characterization and its identity with Zn2+-guanidinobutyrase. J. Biochem. 133, 33–42 (2003).
Google Scholar
Saragadam, T., Kumar, S. & Punekar, N. S. Characterization of 4-guanidinobutyrase from Aspergillus niger. Microbiology 165, 396–410 (2019).
Google Scholar
Viator, R. J., Rest, R. F., Hildebrandt, E. & McGee, D. J. Characterization of Bacillus anthracis arginase: effects of pH, temperature, and cell viability on metal preference. BMC Biochem. 9, 15 (2008).
Google Scholar
D’Antonio, E. L., Hai, Y. & Christianson, D. W. Structure and function of non-native metal clusters in human arginase I. Biochemistry 51, 8399–8409 (2012).
Google Scholar
Andresen, E., Peiter, E. & Küpper, H. Trace metal metabolism in plants. J. Exp. Bot. 69, 909–954 (2018).
Google Scholar
Eisenhut, M. Manganese homeostasis in cyanobacteria. Plants 9, 18 (2019).
Google Scholar
Burnat, M. & Flores, E. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena. MicrobiologyOpen 3, 777–792 (2014).
Google Scholar
Callahan, B. P., Yuan, Y. & Wolfenden, R. The burden borne by urease. J. Am. Chem. Soc. 127, 10828–10829 (2005).
Google Scholar
Lewis, C. A. Jr & Wolfenden, R. The nonenzymatic decomposition of guanidines and amidines. J. Am. Chem. Soc. 136, 130–136 (2014).
Google Scholar
Grobben, Y. et al. Structural insights into human Arginase-1 pH dependence and its inhibition by the small molecule inhibitor CB-1158. J. Struct. Biol. X 4, 100014 (2020).
Google Scholar
Mills, L. A., McCormick, A. J. & Lea-Smith, D. J. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci. Rep. 40, BSR20193325 (2020).
Google Scholar
Giner-Lamia, J. et al. Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp PCC 6803. Nucleic Acids Res. 45, 11800–11820 (2017).
Google Scholar
Martinez, S. & Hausinger, R. P. Biochemical and spectroscopic characterization of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. Biochemistry 55, 5989–5999 (2016).
Google Scholar
Copeland, R. A. et al. An iron(IV)-oxo intermediate initiating l-arginine oxidation but not ethylene production by the 2-oxoglutarate-dependent oxygenase, ethylene-forming enzyme. J. Am. Chem. Soc. 143, 2293–2303 (2021).
Google Scholar
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111, 1–61 (1979).
Geyer, J. W. & Dabich, D. Rapid method for determination of arginase activity in tissue homogenates. Anal. Biochem. 39, 412–417 (1971).
Google Scholar
van Anken, H. C. & Schiphorst, M. E. A kinetic determination of ammonia in plasma. Clin. Chim. Acta 56, 151–157 (1974).
Google Scholar
Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).
Google Scholar
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
Google Scholar
Lamzin, V. S. P. A., Wilson, K. S. In International Tables for Crystallography Vol. F (eds Arnold, E. et al.) 525–528 (Kluwer, 2012).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Google Scholar
Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).
Google Scholar
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).
Google Scholar
Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006).
Google Scholar
Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).
Google Scholar
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).
Google Scholar
Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).
Google Scholar
Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).
Google Scholar
Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).
Google Scholar
Lemoine, F. et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res. 47, W260–W265 (2019).
Google Scholar
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
Google Scholar
Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
Google Scholar
Source: Ecology - nature.com