Lampert, W. Zooplankton research: The contribution of limnology to general ecological paradigms. Aquat. Ecol. 31, 19–27. https://doi.org/10.1023/A:1009943402621 (1997).
Google Scholar
Sotton, B. et al. Trophic transfer of microcystins through the lake pelagic food web: Evidence for the role of zooplankton as a vector in fish contamination. Sci. Total Environ. 466–467, 152–163. https://doi.org/10.1016/j.scitotenv.2013.07.020 (2014).
Google Scholar
St-Gelais, F. N., Sastri, A. R., del Giorgio, P. A. & Beisner, B. E. Magnitude and regulation of zooplankton community production across boreal lakes. Limnol. Oceanogr. Lett. 2(6), 210–217. https://doi.org/10.1002/lol2.10050 (2017).
Google Scholar
Dejen, E., Vijverberg, J., Nagelkerke, L. A. J. & Sibbing, F. A. Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake (L. Tana, Ethiopia). Hydrobiologia 513(1), 39–49. https://doi.org/10.1023/b:hydr.0000018163.60503.b8 (2004).
Google Scholar
Arendt, K. E. et al. Effects of suspended sediments on copepods feeding in a glacial influenced sub-Arctic fjord. J. Plankton Res. 33, 1526–1537. https://doi.org/10.1093/plankt/fbr054 (2011).
Google Scholar
Carrasco, N. K., Perissinotto, R. & Jones, S. Turbidity effects on feeding and mortality of the copepod Acartiella natalensis (Connell and Grindley, 1974) in the St Lucia Estuary, South Africa. J. Exp. Mar. Biol. Ecol. 446, 45–51. https://doi.org/10.1016/j.jembe.2013.04.016 (2013).
Google Scholar
Goździejewska, A. et al. Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia 774, 7–21. https://doi.org/10.1007/s10750-016-2724-8 (2016).
Google Scholar
Zhou, J., Qin, B. & Han, X. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu. Environ. Sci. Pollut. Res. 25, 1168–1175. https://doi.org/10.1007/s11356-017-0262-1 (2018).
Google Scholar
Chou, W.-R., Fang, L.-S., Wang, W.-H. & Tew, K. S. Environmental influence on coastal phytoplankton and zooplankton diversity: A multivariate statistical model analysis. Environ. Monit. Assess. 184(9), 5679–5688. https://doi.org/10.1007/s10661-011-2373-3 (2011).
Google Scholar
Du, X. et al. Analyzing the importance of top-down and bottom-up controls in food webs of Chinese lakes through structural equation modeling. Aquat. Ecol. 49(2), 199–210. https://doi.org/10.1007/s10452-015-9518-3 (2015).
Google Scholar
Feitosa, I. B. et al. Plankton community interactions in an Amazonian floodplain lake, from bacteria to zooplankton. Hydrobiologia 831, 55–70. https://doi.org/10.1007/s10750-018-3855-x (2019).
Google Scholar
Kruk, M. & Paturej, E. Indices of trophic and competitive relations in a planktonic network of a shallow, temperate lagoon. A graph and structural equation modeling approach. Ecol. Indic. 112, 106007. https://doi.org/10.1016/j.ecolind.2019.106007 (2020).
Google Scholar
Kruk, M., Paturej, E. & Artiemjew, P. From explanatory to predictive network modeling of relationships among ecological indicators in the shallow temperate lagoon. Ecol. Indic. 117, 106637. https://doi.org/10.1016/j.ecolind.2020.106637 (2020).
Google Scholar
Kruk, M., Paturej, E. & Obolewski, K. Zooplankton predator–prey network relationships indicates the saline gradient of coastal lakes. Machine learning and meta-network approach. Ecol. Indic. 125, 107550. https://doi.org/10.1016/j.ecolind.2021.107550 (2021).
Google Scholar
Oh, H.-J. et al. Comparison of taxon-based and trophi-based response patterns of rotifer community to water quality: Applicability of the rotifer functional group as an indicator of water quality. Anim. Cells Syst. 21, 133–140. https://doi.org/10.1080/19768354.2017.1292952 (2017).
Google Scholar
Sodré, E. D. O. & Bozelli, R. L. How planktonic microcrustaceans respond to environment and affect ecosystem: A functional trait perspective. Int. Aquat. Res. 11, 207–223. https://doi.org/10.1007/s40071-019-0233-x (2019).
Google Scholar
Simões, N. R. et al. Changing taxonomic and functional β-diversity of cladoceran communities in Northeastern and South Brazil. Hydrobiologia 847, 3845–3856. https://doi.org/10.1007/s10750-020-04234-w (2020).
Google Scholar
Goździejewska, A. M., Koszałka, J., Tandyrak, R., Grochowska, J. & Parszuto, K. Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia 848, 2699–2719. https://doi.org/10.1007/s10750-021-04590-1 (2021).
Google Scholar
Hart, R. C. Zooplankton feeding rates in relation to suspended sediment content: Potential influences on community structure in a turbid reservoir. Fresh. Biol. 19, 123–139. https://doi.org/10.1111/j.1365-2427.1988.tb00334.x (1988).
Google Scholar
Gliwicz, Z. M. & Pijanowska, J. The role of predation in zooplankton succession. In Plankton Ecology. Succession in Plankton Communities (ed. Sommer, U.) 253–296 (Springer Verlag, 1989).
Google Scholar
Gardner, M. B. Effects of turbidity on feeding rates and selectivity of bluegills. Trans. Am. Fish. Soc. 110(3), 446–450. https://doi.org/10.1577/1548-8659(1981)110%3c446:EOTOFR%3e2.0.CO;2 (1981).
Google Scholar
Zettler, E. R. & Carter, J. C. H. Zooplankton community and species responses to a natural turbidity gradient in Lake Temiskaming, Ontario-Quebec. Can. J. Fish. Aquat. Sci. 43, 665–673. https://doi.org/10.1139/f86-080 (1986).
Google Scholar
APHA. Standard Methods for the Examination of Water and Wastewater 20th edn. (American Public Health Association, 1999).
Lind, O. T., Chrzanowski, T. H. & D’avalos-Lind, L. Clay turbidity and the relative production of bacterioplankton and phytoplankton. Hydrobiologia 353, 1–18. https://doi.org/10.1023/A:1003039932699 (1997).
Google Scholar
Boenigk, J. & Novarino, G. Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates. Aquat. Microb. Ecol. 34, 181–192. https://doi.org/10.3354/ame034181 (2004).
Google Scholar
Noe, G. B., Harvey, J. W. & Saiers, J. E. Characterization of suspended particles in Everglades wetlands. Limnol. Oceanogr. 52, 1166–1178. https://doi.org/10.4319/lo.2007.52.3.1166 (2007).
Google Scholar
Bilotta, G. S. & Brazier, R. E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 42, 2849–2861. https://doi.org/10.1016/j.watres.2008.03.018 (2008).
Google Scholar
Fernandez-Severini, M. D., Hoffmeyer, M. S. & Marcovecchio, J. E. Heavy metals concentrations in zooplankton and suspended particulate matter in a southwestern Atlantic temperate estuary (Argentina). Environ. Monit. Assess. 185, 1495–1513. https://doi.org/10.1007/s10661-012-3023-0 (2013).
Google Scholar
Paaijmans, K. P., Takken, W., Githeko, A. K. & Jacobs, A. F. G. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int. J. Biometeorol. 52(8), 747–753. https://doi.org/10.1007/s00484-008-0167-2 (2008).
Google Scholar
Asrafuzzaman, M., Fakhruddin, A. N. M. & Hossain, M. A. Reduction of turbidity of water using locally available natural coagulants. ISRN Microbiol. 1–6, 2011. https://doi.org/10.5402/2011/632189 (2011).
Google Scholar
Kirk, K. L. & Gilbert, J. J. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71(5), 1741–1755. https://doi.org/10.2307/1937582 (1990).
Google Scholar
Kirk, K. L. Effects of suspended clay on Daphnia body growth and fitness. Freshwater Biol. 28, 103–109. https://doi.org/10.1111/j.1365-2427.1992.tb00566.x (1992).
Google Scholar
Levine, S. N., Zehrer, R. F. & Burns, C. W. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshw. Biol. 50, 1515–1536. https://doi.org/10.1111/j.1365-2427.2005.01420 (2005).
Google Scholar
Moreira, F. W. A. et al. Assessing the impacts of mining activities on zooplankton functional diversity. Acta Limn. Bras. 28, e7. https://doi.org/10.1590/S2179-975X0816 (2016).
Google Scholar
Kerfoot, W. C. & Sih, A. Predation. Direct and Indirect Impacts on Aquatic Communities Vol. 160 (University Press of New England, 1987).
Schou, M. O. et al. Restoring lakes by using artificial plant beds: Habitat selection of zooplankton in a clear and a turbid shallow lake. Freshw. Biol. 54(7), 1520–1531. https://doi.org/10.1111/j.1365-2427.2009.02189.x (2009).
Google Scholar
Goździejewska, A. M., Gwoździk, M., Kulesza, S., Bramowicz, M. & Koszałka, J. Effects of suspended micro- and nanoscale particles on zooplankton functional diversity of drainage system reservoirs at an open-pit mine. Sci. Rep. 9, 16113. https://doi.org/10.1038/s41598-019-52542-6 (2019).
Google Scholar
Ribeiro, F. et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci. Total Environ. 466–467, 232–241. https://doi.org/10.1016/j.scitotenv.2013.06.101 (2014).
Google Scholar
Vallotton, P., Angel, B., Mccall, M., Osmond, M. & Kirby, J. Imaging nanoparticle-algae interactions in three dimensions using Cytoviva microscopy. J. Microsc. 257(2), 166–169. https://doi.org/10.1111/jmi.12199 (2015).
Google Scholar
Shanthi, S. et al. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb. Pathogenesis 93, 70e77. https://doi.org/10.1016/j.micpath.2016.01.014 (2016).
Google Scholar
Vijayakumar, S. et al. Ecotoxicity of Musa paradisiaca leaf extract-coated ZnO nanoparticles to the freshwater microcrustacean Ceriodaphnia cornuta. Limnologica 67, 1–6. https://doi.org/10.1016/j.limno.2017.09.004 (2017).
Google Scholar
Hart, R. C. Zooplankton distribution in relation to turbidity and related environmental gradients in a large subtropical reservoir: Patterns and implications. Freshw. Biol. 24(2), 241–263. https://doi.org/10.1111/j.1365-2427.1990.tb00706.x (1990).
Google Scholar
Pollard, A. I., González, M. J., Vanni, M. J. & Headworth, J. L. Effects of turbidity and biotic factors on the rotifer community in an Ohio reservoir. In Rotifera VIII: A Comparative Approach. Developments in Hydrobiology, Hydrobiologia Vol. 387388 (eds Wurdak, E. et al.) 215–223 (Springer, 1998).
Roman, M. R., Holliday, D. V. & Sanford, L. P. Temporal and spatial patterns of zooplankton in the Chesapeake Bay turbidity maximum. Mar. Ecol. Prog. Ser. 213, 215–227. https://doi.org/10.3354/meps213215 (2001).
Google Scholar
Young, I. R. & Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 364(6440), 548–552. https://doi.org/10.1126/science.aav9527 (2019).
Google Scholar
Goździejewska, A. M., Skrzypczak, A. R., Paturej, E. & Koszałka, J. Zooplankton diversity of drainage system reservoirs at an opencast mine. Knowl. Manag. Aquat. Ecosyst. 419, 33. https://doi.org/10.1051/kmae/2018020 (2018).
Google Scholar
Goździejewska, A. M., Skrzypczak, A. R., Koszałka, J. & Bowszys, M. Effects of recreational fishing on zooplankton communities of drainage system reservoirs at an open-pit mine. Fish. Manag. Ecol. 00, 1–13. https://doi.org/10.1111/fme.12411 (2020).
Google Scholar
Allesina, S., Bodini, A. & Bondavalli, C. Ecological subsystems via graph theory: The role of strongly connected components. Oikos 110, 164–176. https://doi.org/10.1111/j.0030-1299.2005.13082.x (2005).
Google Scholar
D’Alelio, D. et al. Ecological-network models link diversity, structure and function in the plankton food-web. Sci. Rep. 6, 21806. https://doi.org/10.1038/srep21806 (2016).
Google Scholar
Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance 6th edn. (Benjamin Cummings, 2009).
Ejsmont-Karabin, J., Radwan, S. & Bielańska-Grajner, I. Rotifers. Monogononta–Atlas of Species. Polish Freshwater Fauna (Univ of Łódź, 2004).
Streble, H. & Krauter, D. Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Süβwassers (Kosmos Gesellschaft der Naturfreunde Franckhsche Verlagshandlung Stuttgart, 1978).
Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol. J. Ecol. 60, 339–350 (2012).
Gutkowska, A., Paturej, E. & Kowalska, E. Rotifer trophic state indices as ecosystem indicators in brackish coastal waters. Oceanologia 55(4), 887–899. https://doi.org/10.5697/oc.55-4.887 (2013).
Google Scholar
Dembowska, E. A., Napiórkowski, P., Mieszczankin, T. & Józefowicz, S. Planktonic indices in the evaluation of the ecological status and the trophic state of the longest lake in Poland. Ecol. Indic. 56, 15–22. https://doi.org/10.1016/j.ecolind.2015.03.019 (2015).
Google Scholar
Sousa, W., Attayde, J. L., Rocha, E. D. S. & Eskinazi-Sant’Anna, E. M. The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil. J. Plankton Res. 30(6), 699–708. https://doi.org/10.1093/plankt/fbn032 (2008).
Google Scholar
Kak, A. & Rao, R. Does the evasive behavior of H. exarthra influence its competition with cladocerans? In Rotifera VIII: A Comparative Approach. Developments in Hydrobiology, Hydrobiologia Vol. 387/388 (eds Wurdak, E. et al.) 409–419 (Springer, 1998).
Hochberg, R., Yang, H. & Moore, J. The ultrastructure of escape organs: Setose arms and crossstriated muscles in Hexarthra mira (Rotifera: Gnesiotrocha: Flosculariaceae). Zoomorphology 136, 159–173. https://doi.org/10.1007/s00435-016-0339-2 (2017).
Google Scholar
Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).
Google Scholar
Connell, J. H. Intermediate-disturbance hypothesis. Science 204(4399), 1345 (1979).
Google Scholar
Martín González, A. M., Dalsgaard, B. & Olesen, J. M. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 7(1), 36–43. https://doi.org/10.1016/j.ecocom.2009.03.008 (2010).
Google Scholar
Paine, R. T. A note on trophic complexity and community stability. Am. Nat. 104, 91–93 (1969).
Google Scholar
Schmitz, O. J. & Trussell, G. C. Multiple stressors, state-dependence and predation risk—Foraging trade-offs: Toward a modern concept of trait-mediated indirect effects in communities and ecosystems. Curr. Opin. Behav. Sci. 12, 6–11. https://doi.org/10.1016/j.cobeha.2016.08.003 (2016).
Google Scholar
Burns, C. W. & Gilbert, J. J. Effects of daphnid size and density on interference between Daphnia and Keratella cochlearis. Limnol. Oceanogr. 31(4), 848–858. https://doi.org/10.4319/lo.1986.31.4.0848 (1986).
Google Scholar
Gilbert, J. J. Suppression of rotifer populations by Daphnia: A review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol. Oceanogr. 33(6), 1286–1303. https://doi.org/10.4319/lo.1988.33.6.1286 (1988).
Google Scholar
Conde-Porcuna, J. M., Morales-Baquero, R. & Cruz-Pizarro, L. Effects of Daphnia longispina on rotifer populations in a natural environment: Relative importance of food limitation and interference competition. J. Plankton Res. 16(6), 691–706. https://doi.org/10.1093/plankt/16.6.691 (1994).
Google Scholar
Ladle, R. J. & Whittaker, R. J. (eds) Conservation Biogeography (Wiley–Blackwell, 2011).
Cottee-Jones, H. E. W. & Whittaker, R. J. The keystone species concept: A critical appraisal. Front. Biogeogr. 4(3), 117–127. https://doi.org/10.21425/F5FBG12533 (2012).
Google Scholar
Remane, A. Die Brackwasserfauna. Verhandlungen Der Deutschen Zoologischen Gesellschaft 36, 34–74 (1934).
Skrzypczak, A. R. & Napiórkowska-Krzebietke, A. Identification of hydrochemical and hydrobiological properties of mine waters for use in aquaculture. Aquac. Rep. 18, 100460. https://doi.org/10.1016/j.aqrep.2020.100460 (2020).
Google Scholar
von Flössner, D. & Krebstiere, C. Kiemen-und Blattfüsser, Branchiopoda, Fischläuse, Branchiura Vol. 382 (VEB Gustav Fischer Verlag, 1972).
Koste, W. Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta. I Textband, II Tafelband 52–570 (Gebrüder Borntraeger, 1978).
Rybak, J. I. & Błędzki, L. A. Freshwater Planktonic Crustaceans (Warsaw University Press, 2010).
Błędzki, L. A. & Rybak, J. I. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to Species Identification with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis (Springer, 2016).
Google Scholar
Bottrell, H. H. et al. A review of some problems in zooplankton production studies. Norw. J. Zool. 24, 419–456 (1976).
Ejsmont-Karabin, J. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydr. 45, 513–522 (1998).
Kovach, W. L. MVSP—A Multivariate Statistical Package for Windows, ver. 3.2 (Kovach Computing Services Pentraeth, 2015).
Borgatti, S. P. Centrality and network flow. Soc. Netw. 27, 55–71. https://doi.org/10.1016/j.socnet.2004.11.008 (2005).
Google Scholar
Kamada, T. & Kawai, S. An algorithm for drawing general undirected graphs—Inform. Process Lett. 31, 7–15 (1989).
Google Scholar
Pavlopoulos, G. A. et al. Using graph theory to analyze biological networks. BioData Min 4, 10 (2011).
Google Scholar
Newman, M. E. J. A measure of betweenness centrality based on random walks. Soc. Netw. 27, 39–54. https://doi.org/10.1016/j.socnet.2004.11.009 (2005).
Google Scholar
Brandes, U. A. faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177. https://doi.org/10.1080/0022250X.2001.9990249 (2001).
Google Scholar
Source: Ecology - nature.com