Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
Google Scholar
Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 108, 17905–17909 (2011).
Google Scholar
Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).
Google Scholar
Doney, S. C. Plankton in a warmer world. Nature 444, 695–696 (2006).
Google Scholar
Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).
Google Scholar
Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
Google Scholar
Zingone, A., Phlips, E. J. & Harrison, P. J. Multiscale variability of twenty-two coastal phytoplankton time series: A global scale comparison. Estuaries Coasts 33, 224–229 (2010).
Google Scholar
Cloern, J. E. et al. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Glob. Change Biol. 22, 513–529 (2016).
Google Scholar
Cloern, J. E. & Jassby, A. D. Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuaries Coasts 33, 230–241 (2010).
Google Scholar
Romagnan, J.-B. et al. Comprehensive model of annual plankton succession based on the whole-plankton time series approach. PLoS ONE 10, e0119219 (2015).
Google Scholar
Guadayol, Ò. et al. Responses of coastal osmotrophic planktonic communities to simulated events of turbulence and nutrient load throughout a year. J. Plankton Res. 31, 583–600 (2009).
Google Scholar
Totti, C. et al. Phytoplankton communities in the northwestern Adriatic Sea: Interdecadal variability over a 30-years period (1988–2016) and relationships with meteoclimatic drivers. J. Mar. Syst. 193, 137–153 (2019).
Zingone, A. et al. Coastal phytoplankton do not rest in winter. Estuaries Coasts 33, 342–361 (2010).
Google Scholar
Widdicombe, C. E., Eloire, D., Harbour, D., Harris, R. P. & Somerfield, P. J. Long-term phytoplankton community dynamics in the Western English Channel. J. Plankton Res. 32, 643–655 (2010).
Harding, L. W. et al. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay. Sci. Rep. 6, 1–16 (2016).
Suikkanen, S., Laamanen, M. & Huttunen, M. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar. Coast. Shelf Sci. 71, 580–592 (2007).
Google Scholar
Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L. & Kraberg, A. Long-term trends in phytoplankton composition in the western and central Baltic Sea. J. Mar. Syst. 87, 145–159 (2011).
Cloern, J. E. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont. Shelf Res. 7, 1367–1381 (1987).
Google Scholar
Barbosa, A. B., Domingues, R. B. & Galvão, H. M. Environmental forcing of phytoplankton in a Mediterranean estuary (Guadiana Estuary, South-western Iberia): A decadal study of anthropogenic and climatic influences. Estuaries Coasts 33, 324–341 (2010).
Google Scholar
Barrera-Alba, J. J., Abreu, P. C. & Tenenbaum, D. R. Seasonal and inter-annual variability in phytoplankton over a 22-year period in a tropical coastal region in the southwestern Atlantic Ocean. Cont. Shelf Res. 176, 51–63 (2019).
Google Scholar
Brito, A. C. et al. Changes in the phytoplankton composition in a temperate estuarine system (1960 to 2010). Estuaries Coasts 38, 1678–1691 (2015).
Google Scholar
Zingone, A. et al. Increasing the quality, comparability and accessibility of phytoplankton species composition time-series data. Estuar. Coast. Shelf Sci. 162, 151–160 (2015).
Google Scholar
Smayda, T. J. Phytoplankton species succession. In The Physiological Ecology of Phytoplankton 493–570 (Blackwell Scientific Publications, 1980).
Kremer, C. T. & Klausmeier, C. A. Species packing in eco-evolutionary models of seasonally fluctuating environments. Ecol. Lett. 20, 1158–1168 (2017).
Google Scholar
Sakavara, A., Tsirtsis, G., Roelke, D. L., Mancy, R. & Spatharis, S. Lumpy species coexistence arises robustly in fluctuating resource environments. Proc. Natl. Acad. Sci. USA 115, 738–743 (2018).
Google Scholar
Wiltshire, K. H. et al. Resilience of North Sea phytoplankton spring bloom dynamics: An analysis of long-term data at Helgoland Roads. Limnol. Oceanogr. 53, 1294–1302 (2008).
Google Scholar
Tsakalakis, I., Pahlow, M., Oschlies, A., Blasius, B. & Ryabov, A. B. Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity. Ecol. Model. 384, 241–248 (2018).
Platt, T., Fuentes-Yaco, C. & Frank, K. T. Spring algal bloom and larval fish survival. Nature 423, 398–399 (2003).
Google Scholar
Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).
Google Scholar
Vantrepotte, V. & Melin, F. Temporal variability of 10-year global SeaWiFS time-series of phytoplankton chlorophyll a concentration. ICES J. Mar. Sci. 66, 1547–1556 (2009).
McQuatters-Gollop, A. et al. From microscope to management: The critical value of plankton taxonomy to marine policy and biodiversity conservation. Mar. Policy 83, 1–10 (2017).
Edwards, K. F., Litchman, E. & Klausmeier, C. A. Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecol. Lett. 16, 56–63 (2013).
Google Scholar
Wentzky, V. C., Tittel, J., Jäger, C. G., Bruggeman, J. & Rinke, K. Seasonal succession of functional traits in phytoplankton communities and their interaction with trophic state. J. Ecol. 108, 1649–1663 (2020).
Google Scholar
Karl, D. M. Oceanic ecosystem time-series programs: Ten lessons learned. Oceanography 23, 104–125 (2010).
d’Alcalà, M. R. et al. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): An attempt to discern recurrences and trends. Sci. Mar. 68, 65–83 (2004).
Mazzocchi, M. G., Dubroca, L., García-Comas, C., Capua, I. D. & Ribera d’Alcalà, M. Stability and resilience in coastal copepod assemblages: The case of the Mediterranean long-term ecological research at Station MC (LTER-MC). Prog. Oceanogr. 97–100, 135–151 (2012).
Google Scholar
Thioulouse, J., Simier, M. & Chessel, D. Simultaneous analysis of a sequence of paired ecological tables. Ecology 85, 272–283 (2004).
Lindeman, R. H., Merenda, P. F. & Gold, R. Z. Introduction to bivariate and multivariate analysis 119 (Scott Foresman Co, 1980).
Google Scholar
Longobardi, L. From Data to Knowledge: Integrating Observational Data to Trace Phytoplankton Dynamics in a Changing World (Open Univ, 2021).
Pisano, A. et al. New evidence of mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 12, 132 (2020).
Google Scholar
Zingone, A. et al. Time series and beyond: multifaceted plankton research at a marine Mediterranean LTER site. Nat. Conserv. 34, 273–310 (2019).
Zingone, A., Licandro, P. & Sarno, D. Revising paradigms and myths of phytoplankton ecology using biological time series. In Mediterranean Biological Time Series. CIESM Workshop Monographs 109–114 (2003).
Cianelli, D. et al. Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system. Sci. Rep. 7, 1–15 (2017).
Google Scholar
Zingone, A., Casotti, R., d’Alcalà, M. R., Scardi, M. & Marino, D. ‘St Martin’s Summer’: The case of an autumn phytoplankton bloom in the Gulf of Naples (Mediterranean Sea). J. Plankton Res. 17, 575–593 (1995).
Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1, 493–509 (1978).
Sommer, U. et al. Beyond the plankton ecology group (PEG) model: Mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43, 429–448 (2012).
Reynolds, C. S. What factors influence the species composition of phytoplankton in lakes of different trophic status? In Phytoplankton and Trophic Gradients (eds Alvarez-Cobelas, M. et al.) 11–26 (Springer, 1998).
Zingone, A., Montresor, M. & Marino, D. Summer phytoplankton physiognomy in coastal waters of the Gulf of Naples. Mar. Ecol. 11, 157–172 (1990).
Google Scholar
Harding, L. W. et al. Long-term trends of nutrients and phytoplankton in Chesapeake Bay. Estuaries Coasts 39, 664–681 (2016).
Google Scholar
Andersen, J. H. et al. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 92, 135–149 (2017).
Google Scholar
Giner, C. R. et al. Quantifying long-term recurrence in planktonic microbial eukaryotes. Mol. Ecol. https://doi.org/10.1111/mec.14929 (2019).
Google Scholar
Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422 (2017).
Google Scholar
Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).
Google Scholar
Beaugrand, G. et al. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philos. Trans. R. Soc. B 370, 20130272 (2015).
Conversi, A. et al. The Mediterranean Sea Regime Shift at the End of the 1980s, and intriguing parallelisms with other European Basins. PLoS ONE 5, e10633 (2010).
Google Scholar
Eilertsen, H., Sandberg, S. & Tøllefsen, H. Photoperiodic control of diatom spore growth; a theory to explain the onset of phytoplankton blooms. Mar. Ecol. Prog. Ser. 116, 303–307 (1995).
Google Scholar
Hensen, V. Ueber die Bestimmung des Plankton’s oder des im Meere treibenden Materials an Pflanzen und Thieren (Kiel Publishers, 1887).
Andersen, D. M. & Keafer, B. A. An endogenous annual clock in the toxic marine dinoflagellate Gonyaulax tamarensis. Nature 325, 616–617 (1987).
Google Scholar
Kremp, A. & Anderson, D. M. Factors regulating germination of resting cysts of the spring bloom dinoflagellate Scrippsiella hangoei from the northern Baltic Sea. J. Plankton Res. 22, 1311–1327 (2000).
Aubry, F. B. et al. Plankton communities in the northern Adriatic Sea: Patterns and changes over the last 30 years. Estuar. Coast. Shelf Sci. 115, 125–137 (2012).
Google Scholar
Gutiérrez-Rodríguez, A. et al. Growth and grazing rate dynamics of major phytoplankton groups in an oligotrophic coastal site. Estuar. Coast. Shelf Sci. 95, 77–87 (2011).
Google Scholar
Brannock, P. M., Ortmann, A. C., Moss, A. G. & Halanych, K. M. Metabarcoding reveals environmental factors influencing spatio-temporal variation in pelagic micro-eukaryotes. Mol. Ecol. 25, 3593–3604 (2016).
Google Scholar
Piredda, R. et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. 93, fiw200 (2017).
Google Scholar
Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 13, 388–401 (2019).
Google Scholar
Hiltz, M., Bates, S. S. & Kaczmarska, I. Effect of light: Dark cycles and cell apical length on the sexual reproduction of the pennate diatom Pseudo-nitzschia multiseries (Bacillariophyceae) in culture. Phycologia 39, 59–66 (2000).
Mouget, J.-L., Gastineau, R., Davidovich, O., Gaudin, P. & Davidovich, N. A. Light is a key factor in triggering sexual reproduction in the pennate diatom Haslea ostrearia. FEMS Microbiol. Ecol. 69, 194–201 (2009).
Google Scholar
Montresor, M., Vitale, L., D’Alelio, D. & Ferrante, M. I. Sex in marine planktonic diatoms: Insights and challenges. Perspect. Phycol. 3, 61–75 (2016).
Rost, B., Riebesell, U. & Sültemeyer, D. Carbon acquisition of marine phytoplankton: Effect of photoperiod length. Limnol. Oceanogr. 51, 12–20 (2006).
Google Scholar
Edwards, K. F. Community trait structure in phytoplankton: Seasonal dynamics from a method for sparse trait data. Ecology 97, 3441–3451 (2016).
Google Scholar
Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B 365, 3101–3112 (2010).
Margiotta, F. et al. Do plankton reflect the environmental quality status? The case of a post-industrial Mediterranean Bay. Mar. Environ. Res. 160, 104980 (2020).
Google Scholar
Ferrera, I. et al. Assessment of microbial plankton diversity as an ecological indicator in the NW Mediterranean coast. Mar. Pollut. Bull. 160, 111691 (2020).
Google Scholar
Cloern, J. E., Jassby, A. D., Thompson, J. K. & Hieb, K. A. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay. Proc. Natl. Acad. Sci. USA 104, 18561–18565 (2007).
Google Scholar
Scotto di Carlo, B. et al. Uno studio integrato dell’ecosistema pelagico costiero del Golfo di Napoli. Nova Thalass 7, 99–128 (1985).
Carrada, G. C., Fresi, E., Marino, D., Modigh, M. & D’Alcalà, M. R. Structural analysis of winter phytoplankton in the Gulf of Naples. J. Plankton Res. 3, 291–314 (1981).
Google Scholar
Marino, D., Modigh, M. & Zingone, A. General features of phytoplankton communities and primary production in the Gulf of Naples and adjacent waters. In Marine Phytoplankton and Productivity (Springer, 1984).
Hansen, H. P. & Grasshoff, K. Automated chemical analysis. Methods Seawater Anal. 49, 347–395 (1983).
Sabia, L. et al. Assessing the quality of biogeochemical coastal data: A step-wise procedure. Mediterr. Mar. Sci. 20, 56–73 (2019).
Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).
Google Scholar
Kendall, M. G. Kendall Rank Correlation Methods (Griffin, 1975).
Jassby, A. D. & Cloern, J. E. wq: Exploring water quality monitoring data. R Package Version 04 5, (2015).
Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).
Google Scholar
Scargle, J. D. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).
Google Scholar
Linnell Nemec, A. F. & Nemec, J. M. A test of significance for periods derived using phase-dispersion-minimization techniques. Astron. J. 90, 2317–2320 (1985).
Google Scholar
Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).
Google Scholar
Cram, J. A. et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 9, 563–580 (2015).
Google Scholar
Escoufier, Y. Le traitement des variables vectorielles. Biometrics 29, 751–760 (1973).
Google Scholar
Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4 (Springer, 2018).
Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl. Acad. Sci. USA 103, 13104–13109 (2006).
Google Scholar
O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).
Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).
Bi, J. A review of statistical methods for determination of relative importance of correlated predictors and identification of drivers of consumer liking. J. Sens. Stud. 27, 87–101 (2012).
Source: Ecology - nature.com