European Commission. Report from the commission to the European Parliament and the council on the implementation of the measures concerning the apiculture sector of Regulation (EU) No 1308/2013 of the European Parliament and of the Council establishing a common organisation of the markets in agricultural products. p. 1–16. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:52016DC0776 (2016).
Motta, E. V. S. & Moran, N. A. Impact of glyphosate on the honey bee gut microbiota: Effects of intensity, duration, and timing of exposure. msystems 5, e00268-e1220. https://doi.org/10.1128/mSystems.00268-20 (2020).
Google Scholar
Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B-Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).
Google Scholar
Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919 (2017).
Google Scholar
Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. PNAS 103, 13890–13895. https://doi.org/10.1073/pnas.0600929103 (2006).
Google Scholar
Williams, I. H. The dependence of crop production within the European Union on pollination by honey bees. Agric. Zool. Rev. 20, 20 (1994).
Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22. https://doi.org/10.3896/ibra.1.49.1.02 (2010).
Google Scholar
Vanengelsdorp, D., Hayes, J., Underwood, R. M. & Pettis, J. A survey of honey bee colony losses in the US, fall 2007 to spring 2008. PLoS One 3, 6. https://doi.org/10.1371/journal.pone.0004071 (2008).
Google Scholar
Chagnon, M. Fédération Canadienne de la Faune (Bureau régional du Québec, 2008).
Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37, 616–626. https://doi.org/10.1016/j.foodpol.2012.06.003 (2012).
Google Scholar
Haber, A. I., Steinhauer, N. A. & vanEngelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in US beekeeping operations. J. Econ. Entomol. https://doi.org/10.1093/jee/toz088 (2019).
Google Scholar
Le Conte, Y., Ellis, M. & Ritter, W. Varroa mites and honey bee health: Can Varroa explain part of the colony losses?. Apidologie 41, 353–363. https://doi.org/10.1051/apido/2010017 (2010).
Google Scholar
Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and colony collapse disorder in the United States. J. Apic. Res. 49, 134–136. https://doi.org/10.3896/IBRA.1.49.1.30 (2010).
Google Scholar
Chauzat, M. P. et al. Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environ. Entomol 38, 514–523. https://doi.org/10.1603/022.038.0302 (2009).
Google Scholar
Juan-Borras, M., Domenech, E. & Escriche, I. Mixture-risk-assessment of pesticide residues in retail polyfloral honey. Food Control 67, 127–134. https://doi.org/10.1016/j.foodcont.2016.02.051 (2016).
Google Scholar
Kasiotis, K. M., Anagnostopoulos, C., Anastasiadou, P. & Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC–MS/MS screening: Reported death incidents in honeybees. Sci. Total. Environ 485–486, 633–642. https://doi.org/10.1016/j.scitotenv.2014.03.042 (2014).
Google Scholar
Mullin, C. A. et al. High levels of miticides and agrochemicals in north american apiaries: Implications for honey bee health. PLoS One 5, 19. https://doi.org/10.1371/journal.pone.0009754 (2010).
Google Scholar
Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Buchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect. Physiol. 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001 (2016).
Google Scholar
Alptekin, S. et al. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes. Insect Mol. Biol. 25, 171–180. https://doi.org/10.1111/imb.12211 (2016).
Google Scholar
Tesovnik, T. et al. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. Environ. Pollut. 256, 113443. https://doi.org/10.1016/j.envpol.2019.113443 (2020).
Google Scholar
Gregore, A. et al. Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Sci. Rep. https://doi.org/10.1038/s41598-018-33348-4 (2018).
Google Scholar
Schneider, C. W., Tautz, J., Grunewald, B. & Fuchs, S. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7, 9. https://doi.org/10.1371/journal.pone.0030023 (2012).
Google Scholar
Vazquez, D. E., Ilina, N., Pagano, E. A., Zavala, J. A. & Farina, W. M. Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS One https://doi.org/10.1371/journal.pone.0205074 (2018).
Google Scholar
Vázquez, D. E., Latorre-Estivalis, J. M., Ons, S. & Farina, W. M. Chronic exposure to glyphosate induces transcriptional changes in honey bee larva: A toxicogenomic study. Environ. Pollut. https://doi.org/10.1016/j.envpol.2020.114148 (2020).
Google Scholar
Farina, W. M., Balbuena, M., Herbert, L. T., Mengoni Goñalons, C. & Vázquez, D. E. Effects of the herbicide glyphosate on honey bee sensory and cognitive abilities: Individual impairments with implications for the hive. Insects 10, 354. https://doi.org/10.3390/insects10100354 (2019).
Google Scholar
Wang, Y. H., Zhu, Y. C. & Li, W. H. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.). Ecotox. Environ. Safe 190, 10. https://doi.org/10.1016/j.ecoenv.2019.110100 (2020).
Google Scholar
Kretschmann, A., Gottardi, M., Dalhoff, K. & Cedergreen, N. The synergistic potential of the azole fungicides prochloraz and propiconazole toward a short α-cypermethrin pulse increases over time in Daphnia magna. Aquat. Toxicol. 162, 94–101. https://doi.org/10.1016/j.aquatox.2015.02.011 (2015).
Google Scholar
Yuan, X. et al. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere https://doi.org/10.1016/j.chemosphere.2019.04.088 (2019).
Google Scholar
Yang, Y. et al. Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environ. Pollut. 249, 860–867. https://doi.org/10.1016/j.envpol.2019.03.077 (2019).
Google Scholar
Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628. https://doi.org/10.1111/j.1365-294X.2010.04959.x (2011).
Google Scholar
Corby-Harris, V., Maes, P. & Anderson, K. E. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 9, 13. https://doi.org/10.1371/journal.pone.0095056 (2014).
Google Scholar
Moran, N. A., Hansen, A. K., Powell, J. E. & Sabree, Z. L. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One https://doi.org/10.1371/journal.pone.0036393 (2012).
Google Scholar
Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76. https://doi.org/10.1016/j.mib.2017.12.009 (2018).
Google Scholar
Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384. https://doi.org/10.1038/nrmicro.2016.43 (2016).
Google Scholar
Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14, 801–814. https://doi.org/10.1038/s41396-019-0568-8 (2020).
Google Scholar
Killer, J., Dubná, S., Sedláček, I. & Švec, P. Lactobacillus apis sp. Nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int. J. Syst. Evol. Microbiol. 64, 152–157. https://doi.org/10.1099/ijs.0.053033-0 (2014).
Google Scholar
Forsgren, E., Olofsson, T. C., Váasquez, A. & Fries, I. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41, 99–108. https://doi.org/10.1051/apido/2009065 (2010).
Google Scholar
Schwarz, R. S., Huang, Q. & Evans, J. D. Hologenome theory and the honey bee pathosphere. Curr. Opin. Insect Sci. 10, 1–7. https://doi.org/10.1016/j.cois.2015.04.006 (2015).
Google Scholar
Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. PNAS 109, 11002–11007. https://doi.org/10.1073/pnas.1202970109 (2012).
Google Scholar
Kešnerová, L. et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 15, 28. https://doi.org/10.1371/journal.pbio.2003467 (2017).
Google Scholar
Kwong, W. K., Engel, P., Koch, H. & Moran, N. A. Genomics and host specialization of honey bee and bumble bee gut symbionts. PNAS 111, 11509–11514. https://doi.org/10.1073/pnas.1405838111 (2014).
Google Scholar
Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17, 796–815. https://doi.org/10.1111/1462-2920.12526 (2015).
Google Scholar
Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. PNAS 115, 10305–10310. https://doi.org/10.1073/pnas.1803880115 (2018).
Google Scholar
Blot, N., Veillat, L., Rouze, R. & Delatte, H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS One 14, 16. https://doi.org/10.1371/journal.pone.0215466 (2019).
Google Scholar
Raymann, K. et al. Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Appl. Environ. Microbiol. 84, 13. https://doi.org/10.1128/aem.00545-18 (2018).
Google Scholar
Rouze, R., Mone, A., Delbac, F., Belzunces, L. & Blot, N. The honeybee gut microbiota is altered after chronic exposure to different families of insecticides and infection by Nosema ceranae. Microbes Environ. 34, 226–233. https://doi.org/10.1264/jsme2.ME18169 (2019).
Google Scholar
DeGrandi-Hoffman, G., Corby-Harris, V., DeJong, E. W., Chambers, M. & Hidalgo, G. Honey bee gut microbial communities are robust to the fungicide PristineA (R) consumed in pollen. Apidologie 48, 340–352. https://doi.org/10.1007/s13592-016-0478-y (2017).
Google Scholar
Liu, Y. J. et al. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees. J. Hazard. Mater. 389, 11. https://doi.org/10.1016/j.jhazmat.2019.121818 (2020).
Google Scholar
Syromyatnikov, M. Y., Isuwa, M. M., Savinkova, O. V., Derevshchikova, M. I. & Popov, V. N. The effect of pesticides on the microbiome of animals. Agriculture 10, 79. https://doi.org/10.3390/agriculture10030079 (2020).
Google Scholar
Thompson, H. M. et al. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integr. Environ. Assess. Manag. 10, 463–470. https://doi.org/10.1002/ieam.1529 (2014).
Google Scholar
Motta, E. V. S. et al. Oral and topical exposure to glyphosate in herbicide formulation impact the gut microbiota and survival rates of honey bees. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01150-20 (2020).
Google Scholar
Berg, C. J. et al. Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees. PLoS ONE 13, e0198876. https://doi.org/10.1371/journal.pone.0198876 (2018).
Google Scholar
Rubio, F., Guo, E. & Kamp, L. Survey of glyphosate residues in honey, corn, and soy products. Abstr. Pap. Am. Chem. Soc. https://doi.org/10.4172/2161-0525.1000249 (2015).
Google Scholar
El Agrebi, N. et al. Honeybee and consumer’s exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey. Sci. Total. Environ. 704, 135312. https://doi.org/10.1016/j.scitotenv.2019.135312 (2020).
Google Scholar
Kubik, M. et al. Residues of captan (contact) and difenoconazole (systemic) fungicides in bee products from an apple orchard. Apidologie 31, 531–541 (2000).
Google Scholar
Lopez, S. H., Lozano, A., Sosa, A., Hernando, M. D. & Fernandez-Alba, A. R. Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study. Chemosphere 163, 44–53. https://doi.org/10.1016/j.chemosphere.2016.07.008 (2016).
Google Scholar
Pettis, J. S. et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8, 9. https://doi.org/10.1371/journal.pone.0070182 (2013).
Google Scholar
Abdallah, O. I., Hanafi, A., Ghani, S. B. A., Ghisoni, S. & Lucini, L. Pesticides contamination in Egyptian honey samples. J. Consum. Prot. Food Sci. 12, 317–327. https://doi.org/10.1007/s00003-017-1133-x (2017).
Google Scholar
Blaga, G. V. et al. Antifungal residues analysis in various Romanian honey samples analysis by high resolution mass spectrometry. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes https://doi.org/10.1080/03601234.2020.1724016 (2020).
Google Scholar
Piechowicz, B., Wos, I., Podbielska, M. & Grodzicki, P. The transfer of active ingredients of insecticides and fungicides from an orchard to beehives. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes 53, 18–24. https://doi.org/10.1080/03601234.2017.1369320 (2018).
Google Scholar
Almasri, H. et al. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicol. Environ. Saf. 203, 111013. https://doi.org/10.1016/j.ecoenv.2020.111013 (2020).
Google Scholar
Babendreier, D., Joller, D., Romeis, J., Bigler, F. & Widmer, F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59, 600–610. https://doi.org/10.1111/j.1574-6941.2006.00249.x (2007).
Google Scholar
Emery, O., Schmidt, K. & Engel, P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590. https://doi.org/10.1111/mec.14058 (2017).
Google Scholar
Yanez, O., Gauthier, L., Chantawannakul, P. & Neumann, P. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw147 (2016).
Google Scholar
Tornisielo, V. L., Botelho, R. G., Alves, P. A. T., Bonfleur, E. J. & Monteiro, S. H. Pesticide tank mixes: an environmental point of view. in Herbicides-Current Research and Case Studies in Use. 473–487 (InTech, 2013).
Kanga, L. H., Siebert, S. C., Sheikh, M. & Legaspi, J. C. Pesticide residues in conventionally and organically managed Apiaries in South and North Florida. Curre. Investig. Agric. Curr. Res. https://doi.org/10.32474/CIACR.2019.07.000262 (2019).
Google Scholar
Lambert, O. et al. Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of western France. PLoS One 8, 12. https://doi.org/10.1371/journal.pone.0067007 (2013).
Google Scholar
Mullins, J. W. Pest Control with Enhanced Environmental Safety, Vol 524 ACS Symposium Series, Vol. 13 183–198 (American Chemical Society, 1993).
Google Scholar
Nguyen, B. K. et al. Does imidacloprid seed-treated maize have an impact on honey bee mortality?. J. Econ. Entomol. 102, 616–623. https://doi.org/10.1603/029.102.0220 (2009).
Google Scholar
Pollak, P. Fine chemicals–the industry and the business. Chem. Int. 29, 22. https://doi.org/10.1515/ci.2007.29.5.22b (2007).
Google Scholar
Amrhein, N., Deus, B., Gehrke, P. & Steinrücken, H. C. The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant. Physiol. 66, 830–834. https://doi.org/10.1104/pp.66.5.830 (1980).
Google Scholar
Cao, G. et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS One 7, e38718. https://doi.org/10.1371/journal.pone.0038718 (2012).
Google Scholar
Hitchcock, C. A., Dickinson, K., Brown, S. B., Evans, E. G. V. & Adams, D. J. Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14α-sterol demethylase purified from Candida albicans. Biochem. J. 266, 475–480. https://doi.org/10.1042/bj2660475 (1990).
Google Scholar
Alberoni, D., Favaro, R., Baffoni, L., Angeli, S. & Di Gioia, D. Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144116 (2021).
Google Scholar
Xu, C. et al. Changes in gut microbiota may be early signs of liver toxicity induced by epoxiconazole in rats. Chemotherapy 60, 135–142. https://doi.org/10.1159/000371837 (2014).
Google Scholar
Yang, C., Hamel, C., Vujanovic, V. & Gan, Y. Fungicide: Modes of action and possible impact on nontarget microorganisms. ISRN Ecol. https://doi.org/10.5402/2011/130289 (2011).
Google Scholar
Coupe, R. H., Kalkhoff, S. J., Capel, P. D. & Gregoire, C. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag. Sci. 68, 16–30. https://doi.org/10.1002/ps.2212 (2012).
Google Scholar
Howe, C. M. et al. Toxicity of glyphosate-based pesticides to four North American frog species. Environ. Toxicol. Chem. 23, 1928–1938. https://doi.org/10.1002/etc.2268 (2004).
Google Scholar
Wagner, N., Reichenbecher, W., Teichmann, H., Tappeser, B. & Lötters, S. Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ. Toxicol. Chem. 32, 1688–1700. https://doi.org/10.1002/etc.2268 (2013).
Google Scholar
Pareja, L. et al. Evaluation of glyphosate and AMPA in honey by water extraction followed by ion chromatography mass spectrometry. A pilot monitoring study. Anal. Methods 11, 2123–2128. https://doi.org/10.1039/c9ay00543a (2019).
Google Scholar
Thompson, T. S., van den Heever, J. P. & Limanowka, R. E. Determination of glyphosate, AMPA, and glufosinate in honey by online solid-phase extraction-liquid chromatography-tandem mass spectrometry.. Food. Addit. Contam. Part A Chem. Anal. Control. Expo. Risk. Assess 36, 434–446. https://doi.org/10.1080/19440049.2019.1577993 (2019).
Google Scholar
Dai, P. et al. The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro. J. Agric. Food Chem. 66, 7786–7793. https://doi.org/10.1021/acs.jafc.8b02212 (2018).
Google Scholar
Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. PNAS 114, 4775–4780. https://doi.org/10.1073/pnas.1701819114 (2017).
Google Scholar
du Rand, E. E. et al. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci. Rep. https://doi.org/10.1038/srep11779 (2015).
Google Scholar
Xiao, W. J. et al. Modulation of the pentose phosphate pathway alters phase I metabolism of testosterone and dextromethorphan in HepG2 cells. Acta Pharmacol. Sin. 36, 259–267. https://doi.org/10.1038/aps.2014.137 (2015).
Google Scholar
Renzi, M. T. et al. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotox. Environ. Safe. 127, 205–213. https://doi.org/10.1016/j.ecoenv.2016.01.028 (2016).
Google Scholar
Singh, A., Gupta, V., Siddiqi, N., Tiwari, S. & Gopesh, A. Time course studies on impact of low temperature exposure on the levels of protein and enzymes in fifth instar larvae of Eri Silkworm, Philosamia ricini (Lepidoptera: satuniidae). Biochem. Anal. Biochem. 6, 6. https://doi.org/10.4172/2161-1009.1000321 (2017).
Google Scholar
Vlahović, M., Lazarević, J., Perić-Mataruga, V., Ilijin, L. & Mrdaković, M. Plastic responses of larval mass and alkaline phosphatase to cadmium in the gypsy moth larvae. Ecotox. Environ. Safe 72, 1148–1155. https://doi.org/10.1016/j.ecoenv.2008.03.012 (2009).
Google Scholar
Coleman, J. E. Structure and mechanism of alkaline-phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21, 441–483. https://doi.org/10.1146/annurev.bb.21.060192.002301 (1992).
Google Scholar
Bates, J. M., Akerlund, J., Mittge, E. & Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371–382. https://doi.org/10.1016/j.chom.2007.10.010 (2007).
Google Scholar
Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. Insect Immunol. 1, 69–96. https://doi.org/10.1016/B978-012373976-6.50006-9 (2008).
Google Scholar
Collison, E., Hird, H., Cresswell, J. & Tyler, C. Interactive effects of pesticide exposure and pathogen infection on bee health—a critical analysis. Biol. Rev. 91, 1006–1019. https://doi.org/10.1111/brv.12206 (2016).
Google Scholar
Helmer, S. H., Kerbaol, A., Aras, P., Jumarie, C. & Boily, M. Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environ. Sci. Pollut. Res. 22, 8010–8021. https://doi.org/10.1007/s11356-014-2879-7 (2015).
Google Scholar
Efferth, T., Schwarzl, S. M., Smith, J. & Osieka, R. Role of glucose-6-phosphate dehydrogenase for oxidative stress and apoptosis. Cell Death Differ. 13, 527–528. https://doi.org/10.1038/sj.cdd.4401807 (2006).
Google Scholar
Corona, M. & Robinson, G. E. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol. 15, 687–701. https://doi.org/10.1111/j.1365-2583.2006.00695.x (2006).
Google Scholar
Field, L. M., Devonshire, A. L., Ffrench-Constant, R. H. & Forde, B. G. Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). FEBS Lett. 243, 323–327. https://doi.org/10.1016/0014-5793(89)80154-1 (1989).
Google Scholar
Ma, M. et al. Isolation of carboxylesterase (esterase FE4) from Apis cerana cerana and its role in oxidative resistance during adverse environmental stress. Biochimie 144, 85–97. https://doi.org/10.1016/j.biochi.2017.10.022 (2018).
Google Scholar
Zou, F., Guo, Q., Shen, B. & Zhu, C. A cluster of CYP6 gene family associated with the major quantitative trait locus is responsible for the pyrethroid resistance in Culex pipiens pallen. Insect Mol. Biol. 28, 528–536. https://doi.org/10.1111/imb.12571 (2019).
Google Scholar
Lang, M. L., Braun, C. L., Kanost, M. R. & Gorman, M. J. Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in Drosophila melanogaster. PNAS 109, 13337–13342. https://doi.org/10.1073/pnas.1208703109 (2012).
Google Scholar
Habineza, P. et al. The promoting effect of gut microbiota on growth and development of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its nutritional metabolism. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01212 (2019).
Google Scholar
Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003. https://doi.org/10.1098/rsos.170003 (2017).
Google Scholar
Paradis, D., Berail, G., Bonmatin, J. M. & Belzunces, L. P. Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal. Bioanal. Chem 406, 621–633. https://doi.org/10.1007/s00216-013-7483-z (2014).
Google Scholar
Wiest, L. et al. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J. Chromatogr. A 1218, 5743–5756. https://doi.org/10.1016/j.chroma.2011.06.079 (2011).
Google Scholar
Zufelato, M. S., Lourenco, A. P., Simoes, Z. L. P., Jorge, J. A. & Bitondi, M. M. G. Phenoloxidase activity in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochem. Mol. Biol. 34, 1257–1268. https://doi.org/10.1016/j.ibmb.2004.08.005 (2004).
Google Scholar
Gallup, J. M. qPCR inhibition and amplification of difficult templates. in PCR troubleshooting and optimization: the essential guide. 23–65 (Horizon Scientific Press, 2011).
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108, 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).
Google Scholar
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226. https://doi.org/10.1186/s40168-018-0605-2 (2018).
Google Scholar
Schliep, K. P. phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593. https://doi.org/10.1093/bioinformatics/btq706 (2011).
Google Scholar
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363. https://doi.org/10.1002/bimj.200810425 (2008).
Google Scholar
Belzunces, L. P., Theveniau, M., Masson, P. & Bounias, M. Membrane acetylcholinesterase from Apis mellifera head solubilized by phosphatidylinositol-specific phospholipase-C interacts with an anti-CRD antibody. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 95, 609–612. https://doi.org/10.1016/0305-0491(90)90029-s (1990).
Google Scholar
Bergmeyer, H. U. & Gawehn, K. Principles of Enzymatic Analysis (Verlag Chemie, 1978).
Al-Lawati, H., Kamp, G. & Bienefeld, K. Characteristics of the spermathecal contents of old and young honeybee queens. J. Insect Physiol. 55, 117–122. https://doi.org/10.1016/j.jinsphys.2008.10.010 (2009).
Google Scholar
Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione s-transferases—first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974).
Google Scholar
Bounias, M., Kruk, I., Nectoux, M. & Popeskovic, D. Toxicology of cupric salts on honeybees. V. Gluconate and sulfate action on gut alkaline and acid phosphatases. Ecotox. Envirom. Safe 35, 67–76. https://doi.org/10.1006/eesa.1996.0082 (1996).
Google Scholar
Alaux, C. et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12, 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x (2010).
Google Scholar
Therneau, T. “Survival”: A Package for Survival Analysis in S. R package version 2.38. https://CRAN.R-project.org/package=survival. (2015).
Kassambara, A. & Kosinski, M. “Survminer”: Drawing Survival Curves using “ggplot2”. R package version 0.4.2. https://CRAN.R-project.org/package=survminer. (2018).
de Mendiburu, F. Statistical Procedures for Agricultural Research. Package “Agricolae” Version 1.44. Comprehensive R Archive Network. Institute for Statistics and Mathematics, Vienna, Austria. http://cran.r-project.org/web/packages/agricolae/agricolae.pdf (2013).
Caraux, G. & Pinloche, S. PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21, 1280–1281. https://doi.org/10.1093/bioinformatics/bti141 (2004).
Google Scholar
Source: Ecology - nature.com