in

DNA- and RNA-based bacterial communities and geochemical zonation under changing sediment porewater dynamics on the Aldabra Atoll

  • Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science (New York, N.Y.) 320, 1034–1039 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Jørgensen, B. B. & Kasten, S. in Marine Geochemistry, edited by H. D. Schulz & M. Zabel (Springer, 2006), 271–309.

  • Broman, E., Sjöstedt, J., Pinhassi, J. & Dopson, M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 5, 96 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Billerbeck, M. et al. Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar. Ecol. Prog. Ser. 326, 61–76 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Booth, J. M., Fusi, M., Marasco, R., Mbobo, T. & Daffonchio, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9, 3749 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torti, A., Lever, M. A. & Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 24(Pt 3), 185–196 (2015).

    Google Scholar 

  • Starke, R., Pylro, V. S. & Morais, D. K. 16S rRNA gene copy number normalization does not provide more reliable conclusions in metataxonomic surveys. Microb. Ecol. 81, 535–539 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 7, 2061–2068 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Vrieze, J., Pinto, A. J., Sloan, W. T. & Ijaz, U. Z. The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome 6, 63 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y., Zhao, Z., Dai, M., Jiao, N. & Herndl, G. J. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol. Ecol. 23, 2260–2274 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyer, K. M., Petersen, I. A. B., Tobi, E., Korte, L. & Bohannan, B. J. M. Use of RNA and DNA to identify mechanisms of bacterial community homogenization. Front. Microbiol. 10, 2066 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Petro, C., Starnawski, P., Schramm, A. & Kjeldsen, K. U. Microbial community assembly in marine sediments. Aquat. Microb. Ecol. 79, 177–195 (2017).

    Google Scholar 

  • Walsh, E. A. et al. Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment. Appl. Environ. Microbiol. 82, 4994–4999 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dinsdale, E. A. et al. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3, e1584 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmitt, S. et al. Salinity, microbe and carbonate mineral relationships in brackish and hypersaline lake sediments: A case study from the tropical Pacific coral atoll of Kiritimati. Depositional Rec. 5, 212–229 (2019).

    Google Scholar 

  • Schneider, D., Arp, G., Reimer, A., Reitner, J. & Daniel, R. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific. PLoS ONE 8, e66662 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, B. et al. Sediment microbial communities and their potential role as environmental pollution indicators in Xuande Atoll, South China Sea. Front. Microbiol. 11, 1011 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Galand, P. E. et al. Phylogenetic and functional diversity of Bacteria and Archaea in a unique stratified lagoon, the Clipperton atoll (N Pacific). FEMS Microbiol. Ecol. 79, 203–217 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Stoddart, D. R. The conservation of Aldabra. Geogr. J. 134, 471 (1968).

    Google Scholar 

  • Farrow, G. E. & Brander, K. M. Tidal studies on Aldabra. Phil. Trans. R. Soc. Lond. B 260, 93–121 (1971).

    ADS 

    Google Scholar 

  • Gaillard, C., Bernier, P. & Gruet, Y. L. lagon d’Aldabra (Seychelles, Océan indien), un modèle pour le paléoenvironnement de Cerin (Kimméridgien supérieur, Jura méridional, France). Geobios 27, 331–348 (1994).

    Google Scholar 

  • Hamylton, S., Spencer, T. & Hagan, A. B. Spatial modelling of benthic cover using remote sensing data in the Aldabra lagoon, western Indian Ocean. Mar. Ecol. Prog. Ser. 460, 35–47 (2012).

    ADS 

    Google Scholar 

  • Braithwaite, C. J. R. Last interglacial changes in sea level on Aldabra, western Indian Ocean. Sedimentology 67, 3236–3258 (2020).

    Google Scholar 

  • Haverkamp, P. J. et al. Giant tortoise habitats under increasing drought conditions on Aldabra Atoll—Ecological indicators to monitor rainfall anomalies and related vegetation activity. Ecol. Ind. 80, 354–362 (2017).

    Google Scholar 

  • Hughes, R. N. & Gamble, J. C. A quantitative survey of the biota of intertidal soft substrata on Aldabra Atoll, Indian Ocean. Phil. Trans. R. Soc. Lond. B 279, 327–355 (1977).

    ADS 

    Google Scholar 

  • Braithwaite, C., Casanova, J., Frevert, T. & Whitton, B. A. Recent stromatolites in landlocked pools on Aldabra, Western Indian Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69, 145–165 (1989).

    Google Scholar 

  • Potts, M. & Whitton, B. A. Nitrogen fixation by blue-green algal communities in the intertidal zone of the lagoon of Aldabra Atoll. Oecologia 27, 275–283 (1977).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Potts, M. & Whitton, B. A. Vegetation of the intertidal zone of the lagoon of Aldabra, with particular reference to the photosynthetic prokaryotic communities. Proc. R. Soc. Lond. B. 208, 13–55 (1980).

    ADS 

    Google Scholar 

  • Meyers, P. A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289–302 (1994).

    ADS 
    CAS 

    Google Scholar 

  • Choi, A., Lee, K., Oh, H.-M., Feng, J. & Cho, J.-C. Litoricola marina sp. nov.. Int. J. Syst. Evolut. Microbiol. 60, 1303–1306 (2010).

    CAS 

    Google Scholar 

  • Durham, B. P. et al. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Stand Genom. Sci. 9, 632–645 (2014).

    Google Scholar 

  • Boehm, A. B., Yamahara, K. M. & Sassoubre, L. M. Diversity and transport of microorganisms in intertidal sands of the California coast. Appl. Environ. Microbiol. 80, 3943–3951 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Probandt, D., Eickhorst, T., Ellrott, A., Amann, R. & Knittel, K. Microbial life on a sand grain: From bulk sediment to single grains. ISME J. 12, 623–633 (2018).

    PubMed 

    Google Scholar 

  • Wong, H. L., Smith, D.-L., Visscher, P. T. & Burns, B. P. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5, 15607 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dupraz, C., Visscher, P. T., Baumgartner, L. K. & Reid, R. P. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51, 745–765 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Diaz, M. R., Piggot, A. M., Eberli, G. P. & Klaus, J. S. Bacterial community of oolitic carbonate sediments of the Bahamas Archipelago. Mar. Ecol. Prog. Ser. 485, 9–24 (2013).

    ADS 

    Google Scholar 

  • Cui, H., Yang, K., Pagaling, E. & Yan, T. Spatial and temporal variation in enterococcal abundance and its relationship to the microbial community in Hawaii beach sand and water. Appl. Environ. Microbiol. 79, 3601–3609 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petriglieri, F., Nierychlo, M., Nielsen, P. H. & McIlroy, S. J. In situ visualisation of the abundant Chloroflexi populations in full-scale anaerobic digesters and the fate of immigrating species. PLoS ONE 13, e0206255 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wietz, M., Gram, L., Jørgensen, B. & Schramm, A. Latitudinal patterns in the abundance of major marine bacterioplankton groups. Aquat. Microb. Ecol. 61, 179–189 (2010).

    Google Scholar 

  • Wemheuer, B. et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol. Ecol. 87, 378–389 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Heywood, K. J., Stevens, D. P. & Bigg, G. R. Eddy formation behind the tropical island of Aldabra. Deep Sea Res. Part I 43, 555–578 (1996).

    Google Scholar 

  • Pérez-Cataluña, A. et al. Revisiting the taxonomy of the genus Arcobacter: Getting order from the chaos. Front. Microbiol. 9, 2077 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Revsbech, N. P. & Jørgensen, B. B. Microelectrodes: Their Use in Microbial Ecology. In Advances in Microbial Ecology (ed. Marshall, K. C.) 293–352 (Springer, 1989).

    Google Scholar 

  • Watson, J. et al. Reductively debrominating strains of Propionigenium maris from burrows of bromophenol-producing marine infauna. Int. J. Syst. Evol. Microbiol. 50(Pt 3), 1035–1042 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Sasi, J. T. S., Rahul, K., Ramaprasad, E. V. V., Sasikala, C. & Ramana, C. V. Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. Int. J. Syst. Evolut. Microbiol. 63, 4619–4625 (2013).

    Google Scholar 

  • Rinke, C. et al. High genetic similarity between two geographically distinct strains of the sulfur-oxidizing symbiont ‘Candidatus Thiobios zoothamnicoli’. FEMS Microbiol. Ecol. 67, 229–241 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Vartoukian, S. R., Palmer, R. M. & Wade, W. G. The division “Synergistes”. Anaerobe 13, 99–106 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Janssen, P. H. & Liesack, W. Succinate decarboxylation by Propionigenium maris sp. nov., a new anaerobic bacterium from an estuarine sediment. Arch. Microbiol. 164, 29–35 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Shiozaki, T. et al. Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. ISME J. 10, 2184–2197 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • González-Domenech, C. M., Martínez-Checa, F., Béjar, V. & Quesada, E. Denitrification as an important taxonomic marker within the genus Halomonas. Syst. Appl. Microbiol. 33, 85–93 (2010).

    PubMed 

    Google Scholar 

  • Farmer, J. J., Michael, J. J., Brenner, F. W., Cameron, D. N. & Birkhead, K. M. The Book. In Bergey’s Manual of Systematics of Archaea and Bacteria (eds Whitman, W. B. et al.) 1–79 (Wiley, 2016).

    Google Scholar 

  • Ventosa, A. & Haba, R. R. in Bergey’s Manual of Systematics of Archaea and Bacteria, edited by W. B. Whitman, et al. (Wiley, 2015), 1–16.

  • Lloyd, K. G. Time as a microbial resource. Environ. Microbiol. Rep. 13, 18–21 (2021).

    PubMed 

    Google Scholar 

  • Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 33, 265–278 (2001).

    CAS 

    Google Scholar 

  • Nanca, C. L., Neri, K. D., Ngo, A. C. R., Bennett, R. M. & Dedeles, G. R. Degradation of polycyclic aromatic hydrocarbons by moderately halophilic bacteria from Luzon salt beds. J. Health Pollut. 8, 180915 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bird, J. T. et al. Uncultured microbial phyla suggest mechanisms for multi-thousand-year subsistence in Baltic Sea sediments. MBio 10, 1002 (2019).

    Google Scholar 

  • Moulton, O. M. et al. Microbial associations with macrobiota in coastal ecosystems: Patterns and implications for nitrogen cycling. Front. Ecol. Environ. 14, 200–208 (2016).

    Google Scholar 

  • Park, S., Park, J.-M., Kang, C.-H. & Yoon, J.-H. Aestuariispira insulae gen. nov., sp. nov., a lipolytic bacterium isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 64, 1841–1846 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Evans, M. V. et al. Members of Marinobacter and Arcobacter influence system biogeochemistry during early production of hydraulically fractured natural gas wells in the Appalachian Basin. Front. Microbiol. 9, 2646 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilhelm, R. C. Following the terrestrial tracks of Caulobacter – redefining the ecology of a reputed aquatic oligotroph. ISME J. 12, 3025–3037 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki, D., Ueki, A., Amaishi, A. & Ueki, K. Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int. J. Syst. Evol. Microbiol. 57, 520–526 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Dawson, K. S., Scheller, S., Dillon, J. G. & Orphan, V. J. Stable isotope phenotyping via cluster analysis of nanoSIMS data as a method for characterizing distinct microbial ecophysiologies and sulfur-cycling in the environment. Front. Microbiol. 7, 774 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fadhlaoui, K. et al. Fusibacter fontis sp. nov., a sulfur-reducing, anaerobic bacterium isolated from a mesothermic Tunisian spring. Int. J. Syst. Evol. Microbiol. 65, 3501–3506 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Kjeldsen, K. U. et al. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol. Ecol. 60, 287–298 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Schneider, D., Wemheuer, F., Pfeiffer, B. & Wemheuer, B. Extraction of total DNA and RNA from marine filter samples and generation of a cDNA as universal template for marker gene studies. Methods Mol. Biol. Clifton N J 1539, 13–22 (2017).

    CAS 

    Google Scholar 

  • Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Berkelmann, D., Schneider, D., Hennings, N., Meryandini, A. & Daniel, R. Soil bacterial community structures in relation to different oil palm management practices. Sci. Data 7, 421 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • von Hoyningen-Huene, A. J. E. et al. Bacterial succession along a sediment porewater gradient at Lake Neusiedl in Austria. Sci. data 6, 163 (2019).

    Google Scholar 

  • Tange, O. Gnu parallel-the command-line power tool. login: The USENIX Mag. 36, 42–47 (2011).

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England) 34, i884–i890 (2018).

    Google Scholar 

  • Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina paired-end read merger. Bioinformatics (Oxford, England) 30, 614–620 (2014).

    CAS 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10 (2011).

    Google Scholar 

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

  • Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing (2016).

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • SILVAngs. SILVAngs – rDNA-based microbial community analysis using next-generation sequencing (NGS) data – user guide. Available at https://www.arb-silva.de/fileadmin/silva_databases/sngs/SILVAngs_User_Guide.pdf (2017).

  • McDonald, D. et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. GigaScience 1, 7 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rambaut, A. FigTree – tree figure drawing tool (2018).

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

  • RStudio Team. RStudio: integrated development for R (RStudio Inc., 2021).

  • Chen, L. et al. GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ 6, e4600 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pereira, M. B., Wallroth, M., Jonsson, V. & Kristiansson, E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genom. 19, 274 (2018).

    Google Scholar 

  • Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data (2018).

  • Oksanen, J. et al. vegan: Community ecology package (2018).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England) 26, 1463–1464 (2010).

    CAS 

    Google Scholar 

  • Harrel Jr, F. E., with contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous (2021).

  • Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation (2021).

  • de Cáceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).

    PubMed 

    Google Scholar 

  • Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Esri Inc. ArcGIS Desktop (Esri Inc., 2019).

  • Inkscape Developers. Inkscape (2020).

  • Fussmann, D. et al. Authigenic formation of Ca–Mg carbonates in the shallow alkaline Lake Neusiedl, Austria. Biogeosciences 17, 2085–2106 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Parkhurst, D. L. & Appelo, C. A. in U.S. Geological Survey Techniques and Methods (2013), Vol. 6, pp. 2328–7055.


  • Source: Ecology - nature.com

    Q&A: Randolph Kirchain on how cool pavements can mitigate climate change

    How to clean solar panels without water